Partially mycoheterotrophic (mixotrophic) plants gain carbon from both photosynthesis and their mycorrhizal fungi. This is considered an ancestral state in the evolution of full mycoheterotrophy, but little is known about this nutrition, and especially about the physiological balance between photosynthesis and fungal C gain. To investigate possible compensation between photosynthesis and mycoheterotrophy in the Mediterranean mixotrophic orchid Limodorum abortivum, fungal colonization was experimentally reduced in situ by fungicide treatment. We measured photosynthetic pigments of leaves, stems, and ovaries, as well as the stable C isotope compositions (a proxy for photosynthetic C gain) of seeds and the sizes of ovaries and seeds. We demonstrate that (1) in natural conditions, photosynthetic pigments are most concentrated in ovaries; (2) pigments and photosynthetic C increase in ovaries when fungal C supply is impaired, buffering C limitations and allowing the same development of ovaries and seeds as in natural conditions; and (3) responses to light of pigment and (13)C contents in ovaries shift from null responses in natural conditions to responses typical of autotrophic plants in treated L. abortivum, demonstrating photoadaptation and enhanced use of light in the latter. L. abortivum thus preferentially feeds on fungi in natural conditions, but employs compensatory photosynthesis to buffer fungal C limitations and allow seed development.
BackgroundThe populations of Soldanella (Primulaceae) of the southern Apennines (Italy) are unique within the genus for their distribution and ecology. Their highly fragmented distribution range, with three main metapopulations on some of the highest mountains (Gelbison, Sila and Aspromonte massifs) of the area, poses intriguing questions about their evolutionary history and biogeography, and about the possibility of local endemisms.Aims and methodsIn order to clarify the phylogeny and biogeography of the three metapopulations of Soldanella in the southern Apennines, attributed to S. calabrella to date, and to identify possible local endemisms, a comparative approach based on the study of molecular, morphological and ecological characteristics of the populations was employed. Specifically, one nuclear (total ITS) and two plastid (rbcL and trnL) markers were used for the phylogenetic analyses, performed through both maximum likelihood and Bayesian techniques. Among the morphological features, the glandular hair and leaf biometric traits were analysed, and the environment in which the populations grew was characterised for altitude, forest canopy composition and soil pH, C, N and organic matter.Results and conclusionsOur findings demonstrate that the lineage of Soldanella of southern Italy diverged from the Carpathians lineage during the Middle Pleistocene, and underwent an evolutionary radiation during the Late Pleistocene. The populations of the Sila and Aspromonte massifs diverged from the populations of the Gelbison massif around 380000 years ago and are probably undergoing a progressive differentiation due to their isolation. The populations on the Gelbison massif, moreover, have different morphological features from those of the Sila and Aspromonte massifs and a different ecological niche. The molecular, morphological and ecological data clearly demonstrate that the metapopulation of Soldanella on the Gelbison massif belongs to a new taxonomic unit at the species level, which we name Soldanella sacra A. & L. Bellino from the name of the massif on which it was discovered, the “Holy Mountain”.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0433-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.