Two effective computational approaches for the study of magnetic exchange interactions in large molecules are discussed and tested on a number of model systems, namely, broken-symmetry (BS) and single-determinant (SD) models. Both methods are based on the density functional theory (DFT) but exploit different approximations to deal with multiconfigurational problems. Our results show that the BS model provides semiquantitative results for widely different situations, such as metal-radical interactions and metal-metal interactions mediated by inert organic bridges. Although more refined (and expensive) methods are needed for truely quantitative work, the BS/DFT approach provides a very useful tool for the rationalization of magneto-structural correlations and for the comparison of different bonding situations in large systems involving transition metal atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.