Isocitrate dehydrogenase () mutations in glioma patients confer longer survival and may guide treatment decision making. We aimed to predict the status of gliomas from MR imaging by applying a residual convolutional neural network to preoperative radiographic data. Preoperative imaging was acquired for 201 patients from the Hospital of University of Pennsylvania (HUP), 157 patients from Brigham and Women's Hospital (BWH), and 138 patients from The Cancer Imaging Archive (TCIA) and divided into training, validation, and testing sets. We trained a residual convolutional neural network for each MR sequence (FLAIR, T2, T1 precontrast, and T1 postcontrast) and built a predictive model from the outputs. To increase the size of the training set and prevent overfitting, we augmented the training set images by introducing random rotations, translations, flips, shearing, and zooming. With our neural network model, we achieved IDH prediction accuracies of 82.8% (AUC = 0.90), 83.0% (AUC = 0.93), and 85.7% (AUC = 0.94) within training, validation, and testing sets, respectively. When age at diagnosis was incorporated into the model, the training, validation, and testing accuracies increased to 87.3% (AUC = 0.93), 87.6% (AUC = 0.95), and 89.1% (AUC = 0.95), respectively. We developed a deep learning technique to noninvasively predict genotype in grade II-IV glioma using conventional MR imaging using a multi-institutional data set. .
Purpose Isocitrate dehydrogenase (IDH) and 1p19q codeletion status are importantin providing prognostic information as well as prediction of treatment response in gliomas. Accurate determination of the IDH mutation status and 1p19q co-deletion prior to surgery may complement invasive tissue sampling and guide treatment decisions. Methods Preoperative MRIs of 538 glioma patients from three institutions were used as a training cohort. Histogram, shape, and texture features were extracted from preoperative MRIs of T1 contrast enhanced and T2-FLAIR sequences. The extracted features were then integrated with age using a random forest algorithm to generate a model predictive of IDH mutation status and 1p19q codeletion. The model was then validated using MRIs from glioma patients in the Cancer Imaging Archive. Results Our model predictive of IDH achieved an area under the receiver operating characteristic curve (AUC) of 0.921 in the training cohort and 0.919 in the validation cohort. Age offered the highest predictive value, followed by shape features. Based on the top 15 features, the AUC was 0.917 and 0.916 for the training and validation cohort, respectively. The overall accuracy for 3 group prediction (IDH-wild type, IDH-mutant and 1p19q co-deletion, IDH-mutant and 1p19q non-codeletion) was 78.2% (155 correctly predicted out of 198). Conclusion Using machine-learning algorithms, high accuracy was achieved in the prediction of IDH genotype in gliomas and moderate accuracy in a three-group prediction including IDH genotype and 1p19q codeletion.
Background Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitating tumor volumes as well as the product of maximum bidimensional diameters according to the Response Assessment in Neuro-Oncology (RANO) criteria (AutoRANO). Methods Two cohorts of patients were used for this study. One consisted of 843 preoperative MRIs from 843 patients with low- or high-grade gliomas from 4 institutions and the second consisted of 713 longitudinal postoperative MRI visits from 54 patients with newly diagnosed glioblastomas (each with 2 pretreatment “baseline” MRIs) from 1 institution. Results The automatically generated FLAIR hyperintensity volume, contrast-enhancing tumor volume, and AutoRANO were highly repeatable for the double-baseline visits, with an intraclass correlation coefficient (ICC) of 0.986, 0.991, and 0.977, respectively, on the cohort of postoperative GBM patients. Furthermore, there was high agreement between manually and automatically measured tumor volumes, with ICC values of 0.915, 0.924, and 0.965 for preoperative FLAIR hyperintensity, postoperative FLAIR hyperintensity, and postoperative contrast-enhancing tumor volumes, respectively. Lastly, the ICCs for comparing manually and automatically derived longitudinal changes in tumor burden were 0.917, 0.966, and 0.850 for FLAIR hyperintensity volume, contrast-enhancing tumor volume, and RANO measures, respectively. Conclusions Our automated algorithm demonstrates potential utility for evaluating tumor burden in complex posttreatment settings, although further validation in multicenter clinical trials will be needed prior to widespread implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.