Apple (Malus 3 domestica) represents an interesting model tree crop for studying fruit abscission. The physiological fruitlet drop occurring in this species can be easily magnified by using thinning chemicals, such as benzyladenine (BA), to obtain fruits with improved quality and marketability. Despite the economic importance of this process, the molecular determinants of apple fruitlet abscission are still unknown. In this research, BA was used to obtain fruitlet populations with different abscission potentials to be analyzed by means of a newly released 30K oligonucleotide microarray. RNAs were extracted from cortex and seed of apple fruitlets sampled over a 4-d time course, during which BA triggers fruit drop, and used for microarray hybridization. Transcriptomic profiles of persisting and abscising fruitlets were tested for statistical association with abscission potential, allowing us to identify molecular signatures strictly related to fruit destiny. A hypothetical model for apple fruitlet abscission was obtained by putting together available transcriptomic and metabolomic data. According to this model, BA treatment would establish a nutritional stress within the tree that is primarily perceived by the fruitlet cortex whose growth is blocked by resembling the ovary growth inhibition found in other species. In weaker fruits, this stress is soon visible also at the seed level, likely transduced via reactive oxygen species/sugar and hormones signaling cross talk, and followed by a block of embryogenesis and the consequent activation of the abscission zone.
BackgroundAuxins act as repressors of ripening inception in grape (véraison), while ethylene and abscisic acid (ABA) play a positive role as inducers of the syndrome. Despite the increasing amount of information made available on this topic, the complex network of interactions among these hormones remains elusive. In order to shed light on these aspects, a holistic approach was adopted to evaluate, at the transcriptomic level, the crosstalk between hormones in grape berries, whose ripening progression was delayed by applying naphtalenacetic acid (NAA) one week before véraison.ResultsThe NAA treatment caused significant changes in the transcription rate of about 1,500 genes, indicating that auxin delayed grape berry ripening also at the transcriptional level, along with the recovery of a steady state of its intracellular concentration. Hormone indices analysis carried out with the HORMONOMETER tool suggests that biologically active concentrations of auxins were achieved throughout a homeostatic recovery. This occurred within 7 days after the treatment, during which the physiological response was mainly unspecific and due to a likely pharmacological effect of NAA. This hypothesis is strongly supported by the up-regulation of genes involved in auxin conjugation (GH3-like) and action (IAA4- and IAA31-like). A strong antagonistic effect between auxin and ethylene was also observed, along with a substantial ‘synergism’ between auxins and ABA, although to a lesser extent.ConclusionsThis study suggests that, in presence of altered levels of auxins, the crosstalk between hormones involves diverse mechanisms, acting at both the hormone response and biosynthesis levels, creating a complex response network.
Freshly consumed apples can cause allergic reactions because of the presence of four classes of allergens, namely, Mal d 1, Mal d 2, Mal d 3, and Mal d 4, and their cross-reactivity with sensitizing allergens of other species. Knowledge of environmental and endogenous factors affecting the allergenic potential of apples would provide important information to apple breeders, growers, and consumers for the selection of hypoallergenic genotypes, the adoption of agronomical practices decreasing the allergenic potential, and the consumption of fruits with reduced amount of allergens. In the present research, expression studies were performed by means of real-time PCR for all the known allergen-encoding genes in apple. Fruit samples were collected from 15 apple varieties and from fruits of three different trials, set up to assess the effect of shadowing, elevation, storage, and water stress on the expression of allergen genes. Principal components analysis (PCA) was performed for the classification of varieties according to gene expression values, pointing out that the cultivars Fuji and Brina were two good hypoallergenic candidates. Shadowing, elevation, and storage significantly affected the transcription of the allergen-encoding genes, whereas water stress slightly influenced the expression of only two genes, in spite of the dramatic effect on both fruit size and vegetative growth of the trees. In particular, shadowing may represent an important cultural practice aimed at reducing apple cortex allergenicity. Moreover, elevation and storage may be combined to reduce the allergenic potential of apple fruits. The possible implications of the results for breeders, growers, and consumers are discussed critically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.