In recent years, geophysical applications have been significantly grown in rock mechanics field due to their versatility and reliability as diagnostic and/or monitoring tools. Since these methodologies are mainly non-invasive, they can be used for the investigation and characterization of the internal structure of historical artworks or for the monitoring of built cultural heritage, where the non-destructive feature is an indispensable prerequisite. Commonly, the artworks material properties are unknown or strongly altered due to time and physical/chemical agents. Moreover, their nature (mineralogic and petrographic) and origin (in terms of places where the material was exploited) is uncertain and difficult to allocate. Among the available geophysical techniques, seismic methods are useful for detecting the thickness or position of weathered layers, for estimating the physical properties of different materials and for providing information about cracking and degree of fracturing. In this paper, we present some experiences and preliminary results of geophysical characterization of two Tritons statues, discovered in the garden of the Royal Palace of Venaria (Piedmont Region, Italy). The statues were originally part of the Fountain of Hercules, destroyed in the 18th century during the redevelopment works of the Palace. Ultrasonic pulse velocity measurements were performed on each portion of the statues and 3D-imaging of the apparent P-wave velocity were carried out. The performed geophysical investigations were aimed at defining the overall material quality and detecting possible sectors with low resistance properties that might interfere with the coring operations, necessary for the reassembly of the statues. Results of these surveys were also useful for setting up a 3D-FEM model for simulating the material behaviour through an analysis of the forces and loads involved.
<p>In this paper we present an experience designed to introduce virtual reality and computer graphic modeling as representing tools in all phases of interpretation, analysis, reconstruction and communication of archaeological and historical researches on Venaria Reale Complex. Ten three-dimensional CG reconstructions represent exterior shapes of the Complex corresponding its five major building phases: the relationship between the old town centre, the Royal Complex and its Gardens has been consistently the result of an unified vision. The virtual pass into the history of that site since seventeenth century to the present has been realized with careful virtual camera flight through 3D reconstructions. The main purpose for the final video was to highlight the most significant elements that mark urban and architectural evolutions.</p>
Digital photogrammetry and spectral imaging are widely used in heritage sciences, towards the comprehensive recording, understanding, and protection of historical artefacts and artworks. The availability of consumer-grade modified cameras for spectral acquisition, as an alternative to expensive multispectral sensors and multi-sensor apparatuses, along with semi-automatic software implementations of Structure-from-Motion (SfM) and Multiple-View-Stereo (MVS) algorithms, has made more feasible than ever the combination of those techniques. In the research presented here, the authors assess image-based modeling from near-infrared (NIR) imagery acquired with modified sensors, with applications on tangible heritage. Three-dimensional meshes, textured with the non-visible data, are produced and evaluated. Specifically, metric evaluations are conducted through extensive comparisons with models produced with high-resolution visible (VIS) spectrum image-based modeling, to check accuracy of results. Furthermore, the authors observe and discuss, when the implemented NIR modeling approach, enhances the preservation of surface detail on the reconstructed spectral models or counteracts certain problems arising from lighting conditions during VIS acquisition. Radiometric properties of the produced results are evaluated on the capacity to enhance observation towards the characterization of surface and under-surface state of preservation, and consequently, to support conservation interventions, in comparison to the respective results in visible spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.