Systemic immunity triggered by local plant-microbe interactions is studied as systemic acquired resistance (SAR) or induced systemic resistance (ISR) depending on the site of induction and the lifestyle of the inducing microorganism. SAR is induced by pathogens interacting with leaves, whereas ISR is induced by beneficial microbes interacting with roots. Although salicylic acid (SA) is a central component of SAR, additional signals exclusively promote systemic and not local immunity. These signals cooperate in SAR-and possibly also ISR-associated signaling networks that regulate systemic immunity. The non-SA SAR pathway is driven by pipecolic acid or its presumed bioactive derivative N-hydroxy-pipecolic acid. This pathway further regulates interplant defense propagation through volatile organic compounds that are emitted by SARinduced plants and recognized as defense cues by neighboring plants. Both SAR and ISR influence phytohormone crosstalk towards enhanced defense against pathogens, which at the same time affects the composition of the plant microbiome. This potentially leads to further changes in plant defense, plant-microbe, and plant-plant interactions. Therefore, we propose that such inter-organismic interactions could be combined in potentially highly effective plant protection strategies.
Plants activate biochemical responses to combat stress. (Hemi-)biotrophic pathogens are fended off by systemic acquired resistance (SAR), a primed state allowing plants to respond faster and stronger upon subsequent infection. Here, we show that SAR-like defences in barley (Hordeum vulgare) are propagated between neighboring plants, which respond with enhanced resistance to the volatile cues from infected senders. The emissions of the sender plants contained 15 volatile organic compounds (VOCs) associated with infection. Two of these, β-ionone and nonanal, elicited resistance upon plant exposure. Whole genome transcriptomics analysis confirmed that inter-plant propagation of defence in barley is established as a form of priming. Although gene expression changes were more pronounced after challenge infection of the receiver plants with Blumeria graminis f. sp. hordei, differential gene expression in response to the volatile cues of the sender plants included an induction of HISTONE DEACETYLASE 2 (HvHDA2) and priming of TETRATRICOPEPTIDE REPEAT-LIKE superfamily protein (HvTPL). Because HvHDA2 and HvTPL transcript accumulation was also enhanced by exposure of barley to β-ionone and nonanal, our data identify both genes as possible defence/priming markers in barley. Our results further suggest that VOCs and plant-plant interactions are relevant for possible crop protection strategies priming defence responses in barley.
Base excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG) is essential for removal of aberrantly methylated DNA bases. Genome instability and accumulation of aberrant bases accompany multiple diseases, including cancer and neurological disorders. While BER is well studied on naked DNA, it remains unclear how BER efficiently operates on chromatin. Here, we show that AAG binds to chromatin and forms complex with RNA polymerase (pol) II. This occurs through direct interaction with Elongator and results in transcriptional co-regulation. Importantly, at co-regulated genes, aberrantly methylated bases accumulate towards the 3′end in regions enriched for BER enzymes AAG and APE1, Elongator and active RNA pol II. Active transcription and functional Elongator are further crucial to ensure efficient BER, by promoting AAG and APE1 chromatin recruitment. Our findings provide insights into genome stability maintenance in actively transcribing chromatin and reveal roles of aberrantly methylated bases in regulation of gene expression.
Plants host a multipart immune signalling network to ward off pathogens. Pathogen attack upon plant tissues can often lead to an amplified state of (induced) defence against subsequent infections in distal tissues; this is known as systemic acquired resistance (SAR). The interaction of plants with beneficial microbes of the rhizosphere microbiome can also lead to an induced resistance in above-ground plant tissues, known as induced systemic resistance. Second messengers such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO) are necessary for cell-to-cell signal propagation during SAR and show emergent roles in the mediation of other SAR metabolites. These include the lysine-derived signals pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP), which are key signalling metabolites in SAR. Emerging evidence additionally pinpoints plant volatiles as modulators of defence signalling within and between plants. Plant volatile organic compounds (VOCs) such as monoterpenes can promote SAR by functioning through ROS. Furthermore, plant-derived and additionally also microbial VOCs can target both salicylic acid and jasmonic acid signalling pathways in plants and modulate defence against pathogens. In this review, an overview of recent findings in induced defence signalling, with a particular focus on newer signalling molecules and how they integrate into these networks is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.