Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics Generalized Born Surface Area (MM-GBSA) methods are widely used for drug design/discovery purposes. However, it is not clear if the correlation between predicted and experimental binding affinities can be improved by explicitly considering selected water molecules in the calculation of binding energies, since different and sometimes diverging opinions are found in the literature. In this work, we evaluated how variably populated hydration shells explicitly considered around the ligands may affect the correlation between MM-PB/GBSA computed binding energy and biological activities (IC50 and ΔGbind, depending on the available experimental data). Four different systems-namely, the DNA-topoisomerase complex, α-thrombin, penicillopepsin, and avidin-were considered and ligand hydration shells populated by 10-70 water molecules were systematically evaluated. We found that the consideration of a hydration shell populated by a number of water residues (Nwat) between 30 and 70 provided, in all of the considered examples, a positive effect on correlation between MM-PB/GBSA calculated binding affinities and experimental activities, with a negligible increment of computational cost.
Rac1 protein is implicated in several events of atherosclerotic plaque development and represents a new potential pharmacological target for cardiovascular diseases. In this paper we describe a pharmacophore virtual screening followed by molecular docking calculations leading to the identification of five new Rac1 inhibitors. These compounds were shown to be more effective than the reference compound NSC23766 in reducing the intracellular levels of Rac1-GTP, thus supporting this approach for the development of new Rac1 inhibitors.
A MMGBSA variant (here referred to as Nwat-MMGBSA), based on the inclusion of a certain number of explicit water molecules (Nwat) during the calculations, has been tested on a set of 20 protein-protein complexes, using the correlation between predicted and experimental binding energy as the evaluation metric. Besides the Nwat parameter, the effect of the force field, the molecular dynamics simulation length, and the implicit solvent model used in the MMGBSA analysis have been also evaluated. We found that considering 30 interfacial water molecules improved the correlation between predicted and experimental binding energies by up to 30%, compared to the standard approach. Moreover, the correlation resulted in being rather sensitive to the force field and, to a minor extent, to the implicit solvent model and to the length of the MD simulation.
Acyclic β-hairpins designed on oligomeric and fibril structures of Aβ1–42 disrupt protein–protein interactions mediating amyloid β-peptide aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.