The paper discusses the use of sweep as a remedial strategy to control the aerodynamic limits in low-speed axial fan rotors. In this respect, the present work contributes to the understanding of the potential effect of blade lean on the shifting of the rotor stall margin. Numerical investigations have been undertaken on highly loaded fans of non-free vortex design, with the ideal total head rise coefficient typical of the industrial application range. Two rotors with identical nominal design parameters and, respectively, with 35° forward swept blades and unswept blades have been studied. The investigation has been carried out using an accurate in-house developed multilevel parallel finite element RANS solver, with the adoption of a non-isotropic two-equation turbulence closure. The pay-off derived from the sweep technology has been assessed with respect to the operating range improvement. To this end, the flow structure developing through the blade passages and downstream of the rotors, as well as loss distributions, have been analysed at design and near-peak pressure operating conditions. The analyses of three-dimensional flow structures showed that, sweeping forward the blade, the non-free vortex spanwise secondary flows are attenuated, and a control on the onset of stall is recovered. Moreover, the swept rotor features a reduced sensitivity to leakage flow effects. Consequently, it operates more efficiently approaching the throttling limit.
Taking a lead from the humpback whale flukes, characterized by a series of bumps that result in a sinusoidal-like leading edge, this paper reports on a three-dimensional numerical study of sinusoidal leading edges on cambered airfoil profiles. The turbulent flow around the cambered airfoil with the sinusoidal leading edge was computed at different angles of attack with the open source solver OpenFOAM, using two different eddy viscosity models integrated to the wall. The reported research focused on the effects of the modified leading edge in terms of lift-to-drag performance and the influence of camber on such parameters. For these reasons a comparison with a symmetric airfoil is provided. The research was primarily concerned with the elucidation of the fluid flow mechanisms induced by the bumps and the impact of those mechanisms on airfoil performance, on both symmetric and cambered profiles. The bumps on the leading edge influenced the aerodynamic performance of the airfoil, and the lift curves were found to feature an early recovery in post-stall for the symmetric profile with an additional gain in lift for the cambered profile. The bumps drove the fluid dynamic on the suction side of the airfoil, which in turn resulted in the capability to control the separation at the trailing edge in coincidence with the peak of the sinusoid at the leading edge
Wind-turbine blade rain and sand erosion, over long periods of time, can degrade the aerodynamic performance and therefore the power production. Computational analysis of the erosion can help engineers have a better understanding of the maintenance and protection requirements. We present an integrated method for this class of computational analysis. The main components of the method are the Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) stabilizations, a finite element particle-cloud tracking method, an erosion model based on two time scales, and the Solid-Extension Mesh Moving Technique (SEMMT). The turbulent-flow nature of the analysis is handled with a Reynolds-Averaged Navier-Stokes (RANS) model and SUPG/PSPG stabilization, the particle-cloud trajectories are calculated based on the computed flow field and closure models defined for the turbulent dispersion of particles, and one-way dependence is assumed between the flow and particle dynamics. Because the geometry update due to the erosion has a very long time scale compared to the fluid-particle dynamics, the update takes place in a sequence of "evolution steps" representing the impact of the erosion. A scale-up factor, calculated in different ways depending on the update threshold criterion, relates the erosions and particle counts in the evolution steps to those in the fluid-particle simulation. As the blade geometry evolves, the mesh is updated with the SEMMT. We present compu-
The application of improved blade tip geometries is studied with the aim of identifying an effective design concept for industrial fan passive noise control. The concept developed optimizes a datum blade by means of profiled endplates at the tip, reducing fan noise by changing the tip leakage flow behaviour. Experimental and computational investigations have been carried out on a family of axial fans, in fully ducted configuration, to establish the aerodynamic merits of the proposed blade tip design concept. The flow mechanisms in the fan tip region are correlated to specific blade design features that promote a reduction of the fan aero-acoustic signature in both tonal and broadband noise components. The tip vortical flow structures are characterized, and their role in creation of overall stage acoustic emissions clarified. The reported research identifies modification of tip geometry as markedly affecting the multiple vortex behaviour of blade tip leakage flow by altering the near-wall fluid flow paths on both blade surfaces. Blade tip endplates were also demonstrated to influence the rotor loss behaviour in the blade tip region. Improvement of rotor efficiency was correlated to the control of tip leakage flows
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.