BACKGROUND: To the authors' knowledge, the impact of the coronavirus disease 2019 (COVID-19) pandemic on cytopathology practices worldwide has not been investigated formally. In the current study, data from 41 respondents from 23 countries were reported. METHODS: Data regarding the activity of each cytopathology laboratory during 4 weeks of COVID-19 lockdown were collected and compared with those obtained during the corresponding period in 2019. The overall number and percentage of exfoliative and fine-needle aspiration cytology samples from each anatomic site were recorded. Differences in the malignancy and suspicious rates between the 2 periods were analyzed using a meta-analytical approach. RESULTS: Overall, the sample volume was lower compared with 2019 (104,319 samples vs 190,225 samples), with an average volume reduction of 45.3% (range, 0.1%-98.0%). The percentage of samples from the cervicovaginal tract, thyroid, and anorectal region was significantly reduced (P < .05). Conversely, the percentage of samples from the urinary tract, serous cavities, breast, lymph nodes, respiratory tract, salivary glands, central nervous system, gastrointestinal tract, pancreas, liver, and biliary tract increased (P < .05). An overall increase of 5.56% (95% CI, 3.77%-7.35%) in the malignancy rate in nongynecological samples during the COVID-19 pandemic was observed. When the suspicious category was included, the overall increase was 6.95% (95% CI, 4.63%-9.27%). CONCLUSIONS: The COVID-19 pandemic resulted in a drastic reduction in the total number of cytology specimens regardless of anatomic site or specimen type. The rate of malignancy increased, reflecting the prioritization of patients with cancer who were considered to be at high risk. Prospective monitoring of the effect of delays in access to health services during the lockdown period is warranted. Cancer Cytopathol 2020;0:2-10.
Cdk9 is a member of the Cdc2-like family of kinases. Its cyclin partners are members of the family of cyclin T (T1, T2a and T2b) and cyclin K. The Cdk9/Cyclin T complex appears to be involved in regulating several physiological processes. Recently, Cdk9 has been identified as a regulator of the differentiation program of several cell types, such as muscle cells, monocytes and lymphocytes, suggesting that it may have a function in controlling specific differentiative pathways. We analyzed whether Cdk9 and Cyclin T1 may be involved in the regulation of neuron and astrocyte differentiation. Cdk9 and Cyclin T1 expression levels were monitored during the differentiation program of neuroblastoma and astrocytoma cell lines. Our results suggest that Cdk9/Cyclin T1 complex may be required for neuron differentiation induced by retinoic acid, because the expression level of the complex varies during differentiation, but no significant changes were observed in its expression in the astrocytoma cell line. In addition, the expression of Cdk9 and Cyclin T1 was evaluated by immunohistochemistry in samples of neuroblastoma, PNET (Primary Neuroectodermal Tumor) and astrocytoma tumors of different grades, in order to assess whether there was a correlation between Cdk9 expression and tumor grading. Our results show that in neuroblastoma and PNET tumor samples Cdk9 is more expressed the more differentiated the tumor is. Conversely, no significant alteration of Cdk9 expression was observed in astrocytoma tumor samples of different grades, thus confirming the results obtained for the cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.