We propose a novel concept of a Systemic Optimal Risk Transfer Equilibrium (SORTE), which is inspired by the Bühlmann's classical notion of an Equilibrium Risk Exchange. We provide sufficient general assumptions that guarantee existence, uniqueness, and Pareto optimality of such a SORTE. In both the Bühlmann and the SORTE definition, each agent is behaving rationally by maximizing his/her expected utility given a budget constraint. The two approaches differ by the budget constraints. In Bühlmann's definition the vector that assigns the budget constraint is given a priori. On the contrary, in the SORTE approach, the vector that assigns the budget constraint is endogenously determined by solving a systemic utility maximization. SORTE gives priority to the systemic aspects of the problem, in order to optimize the overall systemic performance, rather than to individual rationality.
A Systemic Optimal Risk Transfer Equilibrium (SORTE) was introduced in "Systemic Optimal Risk Transfer Equilibrium" for the analysis of the equilibrium among financial institutions or in insurance-reinsurance markets. A SORTE conjugates the classical Bühlmann's notion of an equilibrium risk exchange with a capital allocation principle based on systemic expected utility optimization. In this paper we extend such notion to the case in which the value function to be optimized has two components, one being the sum of the single agents' utility functions, the other consisting of a truly systemic component. The latter could be either enforced by an external regulator or be agreed on by the participants in the market. Technically, the extension of SORTE to the new setup requires developing a theory for multivariate utility functions and selecting at the same time a suitable framework for the duality theory. Conceptually, this more general framework allows us to introduce and study a Nash Equilibrium property of the optimizer. We prove existence, uniqueness, Pareto optimality and the Nash Equilibrium property of the newly defined Multivariate Systemic Optimal Risk Transfer Equilibrium.
Limited surgeries seem to achieve satisfactory results in more than one-half of the patients affected by perianal Crohn's lesions, whereas medical treatment alone is curative in a small portion of them.
A Systemic Optimal Risk Transfer Equilibrium (SORTE) was introduced in: “Systemic optimal risk transfer equilibrium”, Mathematics and Financial Economics (2021), for the analysis of the equilibrium among financial institutions or in insurance-reinsurance markets. A SORTE conjugates the classical Bühlmann’s notion of a risk exchange equilibrium with a capital allocation principle based on systemic expected utility optimization. In this paper we extend such a notion to the case when the value function to be optimized is multivariate in a general sense, and it is not simply given by the sum of univariate utility functions. This takes into account the fact that preferences of single agents might depend on the actions of other participants in the game. Technically, the extension of SORTE to the new setup requires developing a theory for multivariate utility functions and selecting at the same time a suitable framework for the duality theory. Conceptually, this more general framework allows us to introduce and study a Nash Equilibrium property of the optimizer. We prove existence, uniqueness, and the Nash Equilibrium property of the newly defined Multivariate Systemic Optimal Risk Transfer Equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.