Recent interest in graph embedding methods has focused on learning a single representation for each node in the graph. But can nodes really be best described by a single vector representation? In this work, we propose a method for learning multiple representations of the nodes in a graph (e.g., the users of a social network). Based on a principled decomposition of the ego-network, each representation encodes the role of the node in a different local community in which the nodes participate. These representations allow for improved reconstruction of the nuanced relationships that occur in the graph -a phenomenon that we illustrate through state-of-the-art results on link prediction tasks on a variety of graphs, reducing the error by up to 90%. In addition, we show that these embeddings allow for effective visual analysis of the learned community structure.
Sybil attacks in which an adversary forges a potentially unbounded number of identities are a danger to distributed systems and online social networks. The goal of sybil defense is to accurately identify sybil identities. This paper surveys the evolution of sybil defense protocols that leverage the structural properties of the social graph underlying a distributed system to identify sybil identities. We make two main contributions. First, we clarify the deep connection between sybil defense and the theory of random walks. This leads us to identify a community detection algorithm that, for the first time, offers provable guarantees in the context of sybil defense. Second, we advocate a new goal for sybil defense that addresses the more limited, but practically useful, goal of securely white-listing a local region of the graph. 1 Although this goal may be more accurately characterized as sybil detection [37], we use here the term sybil defense originally proposed by Yu [44] and widely adopted in the literature. 2 Henceforth, mentions of sybil defense, unless specified otherwise, refer to techniques that leverage the structure of social networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.