SummaryAn increasing number of plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops. Research is increasingly focused on how to design crops specifically for bioenergy production and increased biomass generation for biofuel purposes. The most important biofuel to date is bioethanol produced from sugars (sucrose and starch). Second generation bioethanol is also being targeted for studies to allow the use of the cell wall (lignocellulose) as a source of carbon. If a crop is to be used for bioenergy production, the crop should be high yielding, fast growing, low lignin content and requiring relatively small energy inputs for its growth and harvest. Obtaining high yields in nonprime agricultural land is a key for energy crop development to allow sustainability and avoid competition with food production.Sugarcane is the most efficient bioenergy crop of tropical and subtropical regions, and biotechnological tools for the improvement of this crop are advancing rapidly.We focus this review on the studies of sugarcane genes associated with sucrose content, biomass and cell wall metabolism and the preliminary physiological
Despite the large number of leucine-rich-repeat (LRR) receptor-like-kinases (RLKs) in plants and their conceptual relevance in signaling events, functional information is restricted to a few family members. Here we describe the characterization of new LRR-RLK family members as virulence targets of the geminivirus nuclear shuttle protein (NSP). NSP interacts specifically with three LRR-RLKs, NIK1, NIK2, and NIK3, through an 80-amino acid region that encompasses the kinase active site and A-loop. We demonstrate that these NSP-interacting kinases (NIKs) are membrane-localized proteins with biochemical properties of signaling receptors. They behave as authentic kinase proteins that undergo autophosphorylation and can also phosphorylate exogenous substrates. Autophosphorylation occurs via an intermolecular event and oligomerization precedes the activation of the kinase. Binding of NSP to NIK inhibits its kinase activity in vitro, suggesting that NIK is involved in antiviral defense response. In support of this, infectivity assays showed a positive correlation between infection rate and loss of NIK1 and NIK3 function. Our data are consistent with a model in which NSP acts as a virulence factor to suppress NIK-mediated antiviral responses.
Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO2]. The effects of increased [CO2] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (~370 ppm) and elevated (~720 ppm) [CO2] during 50 weeks in open-top chambers.The plants grown under elevated CO2 showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO2]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher wateruse efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO2. The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO2], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.