Unmanned Aerial Vehicles (UAVs) have a great potential to support search tasks in unstructured environments. Small, lightweight, low speed and agile UAVs, such as multirotors platforms can incorporate many kinds of sensors that are suitable for detecting object of interests in cluttered outdoor areas. However, due to their limited endurance, moderate computing power, and imperfect sensing, mini-UAVs should be into groups using swarm coordination algorithms to perform tasks in a scalable, reliable and robust manner. In this paper a biologically-inspired mechanisms is adopted to coordinate drones performing target search with imperfect sensors. In essence, coordination can be achieved by combining stigmergic and flocking behaviors. Stigmergy occurs when a drone releases digital pheromone upon sensing of a potential target. Such pheromones can be aggregated and diffused between flocking drones, creating a spatiotemporal attractive potential field. Flocking occurs, as an emergent effect of alignment, separation and cohesion, where drones self organise with similar heading and dynamic arrangement as a group. The emergent coordination of drones relies on the alignment of stigmergy and flocking strategies. This paper reports on the design of the novel swarming algorithm, reviewing different strategies and measuring their performance on a number of synthetic and real-world scenarios
Due to growing endurance, safety and non-invasivity, small drones can be increasingly experimented in unstructured environments. Their moderate computing power can be assimilated into swarm coordination algorithms, performing tasks in a scalable manner. For this purpose, it is challenging to investigate the use of biologically-inspired mechanisms. In this paper the focus is on the coordination aspects between small drones required to perform target search. We show how this objective can be better achieved by combining stigmergic and flocking behaviors. Stigmergy occurs when a drone senses a potential target, by releasing digital pheromone on its location. Multiple pheromone deposits are aggregated, increasing in intensity, but also diffused, to be propagated to neighborhood, and lastly evaporated, decreasing intensity in time. As a consequence, pheromone intensity creates a spatiotemporal attractive potential field coordinating a swarm of drones to visit a potential target. Flocking occurs when drones are spatially organized into groups, whose members have approximately the same heading, and attempt to remain in range between them, for each group. It is an emergent effect of individual rules based on alignment, separation and cohesion. In this paper, we present a novel and fully decentralized model for target search, and experiment it empirically using a multi-agent simulation platform. The different combination strategies are reviewed, describing their performance on a number of synthetic and real-world scenarios
We use the marker-based stigmergy, a mechanism that mediates animal-animal interactions, to perform context-aware information aggregation. In contrast with conventional knowledge-based models of aggregation, our model is data-driven and based on self-organization of information. This means that a functional structure called track appears and stays spontaneous at runtime when local dynamism in data occurs. The track is then processed by using similarity between current and reference tracks. Subsequently, the similarity value is handled by domaindependent analytics, to discover meaningful events. Given the changeability of human-centered scenarios, the overall process is also adaptive, thanks to parametric optimization performed via differential evolution. The paper illustrates the proposed approach and discusses its characteristics through two real-world case studies.
In this paper we propose a novel algorithm for adaptive coordination of drones, which performs collaborative target detection in unstructured environments. Coordination is based on digital pheromones released by drones when detecting targets, and maintained in a virtual environment. Adaptation is based on the Differential Evolution (DE) and involves the parametric behaviour of both drones and environment. More precisely, attractive/repulsive pheromones allow indirect communication between drones in a flock, concerning the availability/unavailability of recently found targets. The algorithm is effective if structural parameters are properly tuned. For this purpose DE combines different parametric solutions to increase the swarm performance. We focus first on the study of the principal parameters of the DE, i.e., the crossover rate and the differential weight. Then, we compare the performance of our algorithm with three different strategies on six simulated scenarios. Experimental results show the effectiveness of the approach
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.