Under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. This is a robust effect that is not usually explored in experiments or explicitly implemented or tested in models. However, the range of current strength needed for a depolarization block could be easily reached with a random background activity of only a few hundred excitatory synapses. Depolarization block may thus be an important property of neurons that should be better characterized in experiments and explicitly taken into account in models at all implementation scales. Here we analyze the spiking dynamics of CA1 pyramidal neuron models using the same set of ionic currents on both an accurate morphological reconstruction and on its reduction to a single-compartment. The results show the specific ion channel properties and kinetics that are needed to reproduce the experimental findings, and how their interplay can drastically modulate the neuronal dynamics and the input current range leading to a depolarization block. We suggest that this can be one of the rate-limiting mechanisms protecting a CA1 neuron from excessive spiking activity.
Realistic modeling of neurons are quite successful in complementing traditional experimental techniques. However, their networks require a computational power beyond the capabilities of current supercomputers, and the methods used so far to reduce their complexity do not take into account the key features of the cells nor critical physiological properties. Here we introduce a new, automatic and fast method to map realistic neurons into equivalent reduced models running up to > 40 times faster while maintaining a very high accuracy of the membrane potential dynamics during synaptic inputs, and a direct link with experimental observables. The mapping of arbitrary sets of synaptic inputs, without additional fine tuning, would also allow the convenient and efficient implementation of a new generation of large-scale simulations of brain regions reproducing the biological variability observed in real neurons, with unprecedented advances to understand higher brain functions.
The cellular mechanisms underlying higher brain functions/dysfunctions are extremely difficult to investigate experimentally, and detailed neuron models have proven to be a very useful tool to help these kind of investigations. However, realistic neuronal networks of sizes appropriate to study brain functions present the major problem of requiring a prohibitively high computational resources. Here, building on our previous work, we present a general reduction method based on Strahler's analysis of neuron morphologies. We show that, without any fitting or tuning procedures, it is possible to map any morphologically and biophysically accurate neuron model into an equivalent reduced version. Using this method for Purkinje cells, we demonstrate how run times can be reduced up to 200–fold, while accurately taking into account the effects of arbitrarily located and activated synaptic inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.