The In-Vessel Viewing System (IVVS) units proposed for ITER are deployed to perform in-vessel examination. During plasma operations, the IVVS is located beyond the vacuum vessel, with shielding blocks envisaged to protect components from neutron damage and reduce shutdown dose rate (SDR) levels. Analyses were conducted to determine the effectiveness of several shielding configurations. The neutron response of the system was assessed using global variance reduction techniques and a surface source, and shutdown dose rate calculations were undertaken using MCR2S.Unshielded, the absorbed dose to piezoelectric motors (PZT) was found to be below stable limits, however activation of the primary closure plate (PCP) was prohibitively high. A scenario with shielding blocks at probe level showed significantly reduced PCP contact dose rate, however still marginally exceeded port cell requirements. The addition of shielding blocks at the bioshield plug demonstrated PCP contact dose rates below project requirements. SDR levels in contact with the isolated IVVS cartridge were found to marginally exceed the handson maintenance limit. For engineering feasibility, shielding blocks at bioshield level are to be avoided, however the port cell SDR field requires further consideration. In addition, alternative low-activation steels are being considered for the IVVS cartridge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.