The design study of PROTO-SPHERA, a novel compact torus configuration, has been completed. It is composed of a spherical torus (ST) (with closed flux surfaces) and a force-free screw pinch (SP) (with open flux surfaces and fed by electrodes). PROTO-SPHERA is formed at spherical-tokamak-like densities (∼10 19 m −3) with low voltage (∼200 V) between the electrodes. The idea of replacing the metal centrepost current (I tf) of the spherical tokamaks with the SP plasma electrode current (I e) is aimed mainly at getting rid of the rod at the centre of the plasma configuration, which is the most critical component of spherical tokamak design. As a consequence it should be possible to decrease the aspect ratio A = R/a (R = ST major radius, a = ST minor radius) in the course of experiment and to increase the ratio between the toroidal plasma current (I ST) and the plasma electrode current, I ST /I e 1. Matching two plasma configurations, i.e. an open flux-surface SP and a closed flux-surface ST, brings to life several radically new issues. The purpose of this paper is to analyse the equilibrium, the ideal MHD stability and the formations and modelling issues of such a combined magnetic confinement system. The MULTI-PINCH experimental setup, which is being assembled inside the START vacuum vessel (now in Frascati), will represent the first phase of PROTO-SPHERA: its goal is to prove the feasibility of a stable disc-shaped SP around the electrodes.
Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks (STs). Using the increased heating capabilities P NBI ⩽ 3.8 MW H-mode at I p = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I p and more strongly with B t than in the ITER IPB98(y, 2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original designed total throughput capacity. The anomalous momentum diffusion, χϕ, is linked to the ion diffusion, χi, with a Prandtl number close to P ϕ ≈ χϕ/χi ≈ 1, although χi approaches neoclassical values. New high spatial resolution measurements of the edge radial electric field, E r , show that the position of steepest gradients in electron pressure and E r (i.e. shearing rate) are coincident, but their magnitudes are not linked. The T e pedestal width on MAST scales with rather than ρpol. The edge localized mode (ELM) frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of four external coils (n = 1, 2). A new internal 12 coil set (n ⩽ 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfvén eigenmodes. Fast particle instabilities also affect the off-axis NBI current drive, leading to fast ion diffusion of the order of 0.5 m2 s−1 and a reduction in the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a ST generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST.
In this paper, we present a novel risk-based methodology for optimizing the inspections of large underground infrastructure networks in the presence of incomplete information about the network features and parameters. The methodology employs Multi Attribute Value Theory to assess the risk of each pipe in the network, whereafter the optimal inspection campaign is built with Portfolio Decision Analysis (PDA). Specifically, Robust Portfolio Modeling (RPM) is employed to identify Pareto-optimal portfolios of pipe inspections. The proposed methodology is illustrated by reporting a real case study on the large-scale maintenance optimization of the sewerage network in Espoo, Finland
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.