Chest X-ray (CXR) is the most important technique for performing chest imaging, despite its well-known limitations in terms of scope and sensitivity. These intrinsic limitations of CXR have prompted the development of several artificial intelligence (AI)-based software packages dedicated to CXR interpretation. The online database “AI for radiology” was queried to identify CE-marked AI-based software available for CXR interpretation. The returned studies were divided according to the targeted disease. AI-powered computer-aided detection software is already widely adopted in screening and triage for pulmonary tuberculosis, especially in countries with few resources and suffering from high a burden of this disease. AI-based software has also been demonstrated to be valuable for the detection of lung nodules detection, automated flagging of positive cases, and post-processing through the development of digital bone suppression software able to produce digital bone suppressed images. Finally, the majority of available CE-marked software packages for CXR are designed to recognize several findings, with potential differences in sensitivity and specificity for each of the recognized findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.