BackgroundInadequate immunization coverage with increased risk of vaccine preventable diseases outbreaks remains a problem in Africa. Moreover, different factors contribute to incomplete vaccination status. This study was performed in Dschang (West Region, Cameroon), during the polio outbreak occurred in October 2013, in order to estimate the immunization coverage among children aged 12–23 months, to identify determinants for incomplete vaccination status and to assess the risk of poliovirus spread in the study population.MethodsA cross-sectional household survey was conducted in November-December 2013, using the WHO two-stage sampling design. An interviewer-administered questionnaire was used to obtain information from consenting parents of children aged 12–23 months. Vaccination coverage was assessed by vaccination card and parents’ recall. Chi-square test and multilevel logistic regression model were used to identify the determinants of incomplete immunization status. Statistical significance was set at p < 0.05.ResultsOverall, 3248 households were visited and 502 children were enrolled. Complete immunization coverage was 85.9 % and 84.5 %, according to card plus parents’ recall and card only, respectively. All children had received at least one routine vaccination, the OPV-3 (Oral Polio Vaccine) coverage was >90 %, and 73.4 % children completed the recommended vaccinations before 1-year of age. In the final multilevel logistic regression model, factors significantly associated with incomplete immunization status were: retention of immunization card (AOR: 7.89; 95 % CI: 1.08–57.37), lower mothers’ utilization of antenatal care (ANC) services (AOR:1.25; 95 % CI: 1.07–63.75), being the ≥3rd born child in the family (AOR: 425.4; 95 % CI: 9.6–18,808), younger mothers’ age (AOR: 49.55; 95 % CI: 1.59–1544), parents’ negative attitude towards immunization (AOR: 20.2; 95 % CI: 1.46–278.9), and poorer parents’ exposure to information on vaccination (AOR: 28.07; 95 % CI: 2.26–348.1). Longer distance from the vaccination centers was marginally significant (p = 0.05).ConclusionVaccination coverage was high; however, 1 out of 7 children was partially vaccinated, and 1 out of 4 did not complete timely the recommended vaccinations. In order to improve the immunization coverage, it is necessary to strengthen ANC services, and to improve parents’ information and attitude towards immunization, targeting younger parents and families living far away from vaccination centers, using appropriate communication strategies. Finally, the estimated OPV-3 coverage is reassuring in relation to the ongoing polio outbreak.
We report an increase of serogroup C Neisseria meningitidis invasive meningococcal disease in Tuscany. From January 2015 to end February 2016, 43 cases were reported, among which 10 were fatal, compared to two cases caused by serogroup C recorded in 2014 and three in 2013. No secondary cases occurred. Thirty–five strains belonged to C:P1.5–1,10–8:F3–6:ST-11(cc11). Control measures have been adopted and immunisation campaigns implemented. Studies on risk factors and carriage are ongoing.
https://www.who.int/news/item/30-01-2020-statement-on-the-secondmeeting-of-the-international-health-regulations-( 2005)-emergency-committeeregarding-the-outbreak-of-novel-coronavirus-(2019-ncov) † https://www.who.int/publications/m/item/strategy-to-achieve-global-covid-19vaccination-by-mid-2022 § The strategy brief outlined updated goals, steps, targets, and operational priorities to guide countries, policy makers, civil society, manufacturers, and international organizations in their ongoing efforts through 2022. https://www.who.int/publications/m/item/ global-covid-19-vaccination-strategy-in-a-changing-world--july-2022-update ¶ Older adult definitions vary by country, ranging from persons aged ≥45 years to those aged ≥65 years.coverage with a complete COVID-19 vaccination series** for ** Definition of complete primary series might vary among countries and by vaccine product. National authorities have ultimate authority on scheduling decisions within their jurisdictions; however, WHO makes recommendations for COVID-19 vaccine products that have undergone Emergency Use Listing review. Vaccine fact sheets including these definitions according to WHO recommendations can be found at https://extranet.who.int/pqweb/vaccines/ vaccinescovid-19-vaccine-eul-issued.
In 2015 an increased incidence of invasive meningococcal disease due to serogroup-C (MenC) occurred in Tuscany, Italy. This led the Regional Health Authority of Tuscany to implement a reactive immunisation campaign and to launch an epidemiological field investigation aiming to address targeted immunisation interventions. In 2011–14, 10 MenC cases had been reported compared with 62 cases in 2015–16. The case fatality rate was 21% (n = 13) and 51 cases (82.3%) were confirmed as C:P1.5–1,10–8:F3–6:ST-11(cc11). Overall, 17 clusters were recognised. Six discos and four gay-venues were found to have a role as transmission-hotspots, having been attended by 20 and 14 cases in the 10 days before symptoms onset. Ten and three cases occurred, respectively, among men who have sex with men (MSM) and bisexual individuals, who were involved in 11 clusters. In addition, heterosexual cases (n = 5) attending gay-venues were also found. Secondary cases were not identified. Molecular typing indicated close relationship with MenC clusters recently described among gay, bisexual and other MSM in Europe and the United States, suggesting a possible international spread of the serogroup-C-variant P1.5–1,10–8:F3–6:ST-11(cc11) in this population-group; however, epidemiological links were not identified. In December 2016, a targeted vaccination campaign involving discos and lesbian, gay, bisexual, and transgender (LGBT) associations was implemented. During 2017, 10 cases of MenC occurred, compared with 32 and 30 cases reported in 2015 and 2016 respectively, suggesting the effectiveness of the reactive and targeted immunisation programmes.
Hepatitis B prevention in European Union/European Economic Area (EU/EEA) countries relies on vaccination programmes. We describe the epidemiology of acute hepatitis B virus (HBV) at country and EU/EEA level during 2006–2014. Using a multi-level mixed-effects Poisson regression model we assessed differences in the acute HBV infection notification rates between groups of countries that started universal HBV vaccination before/in vs after 1995; implemented or not a catch-up strategy; reached a vaccine coverage ≥ 95% vs < 95% and had a hepatitis B surface antigen prevalence ≥ 1% vs < 1%. Joinpoint regression analysis was used to assess trends by groups of countries, and additional Poisson regression models to evaluate the association between three-dose HBV vaccine coverage and acute HBV infection notification rates at country and EU/EEA level. The EU/EEA acute HBV infection notification rate decreased from 1.6 per 100,000 population in 2006 to 0.7 in 2014. No differences (p > 0.05) were found in the acute HBV infection notification rates between groups of countries, while as vaccine coverage increased, such rates decreased (p < 0.01). Countries with universal HBV vaccination before 1995, a catch-up strategy, and a vaccine coverage ≥ 95% had significant decreasing trends (p < 0.01). Ending HBV transmission in Europe by 2030 will require high vaccine coverage delivered through universal programmes, supported, where appropriate, by catch-up vaccination campaigns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.