We study the problem of stopping a Brownian bridge X in order to maximise the expected value of an exponential gain function. The problem was posed by Ernst and Shepp (2015), and was motivated by bond selling with non-negative prices.Due to the non-linear structure of the exponential gain, we cannot rely on methods used in the literature to find closed-form solutions to other problems involving the Brownian bridge. Instead, we must deal directly with a stopping problem for a time-inhomogeneous diffusion. We develop techniques based on pathwise properties of the Brownian bridge and martingale methods of optimal stopping theory, which allow us to find the optimal stopping rule and to show the regularity of the value function.
We consider a class of time-inhomogeneous optimal stopping problems and we provide sufficient conditions on the data of the problem that guarantee monotonicity of the optimal stopping boundary. In our setting, time-inhomogeneity stems not only from the reward function but, in particular, from the time dependence of the drift coefficient of the one-dimensional stochastic differential equation (SDE) which drives the stopping problem. In order to obtain our results, we mostly employ probabilistic arguments: we use a comparison principle between solutions of the SDE computed at different starting times, and martingale methods of optimal stopping theory. We also show a variant of the main theorem, which weakens one of the assumptions and additionally relies on the renowned connection between optimal stopping and free-boundary problems. 2020 Mathematics Subject Classification. 60G07, 60G40, 60J60, 49N30, 35R35. Key words and phrases. optimal stopping, monotone stopping boundary, time-inhomogeneous diffusions, partial information.1 Here, we mean that if (t, x) = (t, b(t)) and (tn, xn) → (t, x) as n → ∞, then τ * tn,xn → τ * t,x as n → ∞, P-a.s.
We study the gap between the state pension provided by the Italian pension system pre-Dini reform and post-Dini reform. The goal is to fill the gap between the old and the new pension by joining a defined contribution pension scheme and adopting an optimal investment strategy that is target-based. We find that it is possible to cover, at least partially, this gap with the additional income of the pension scheme, especially in the presence of late retirement and in the presence of stagnant career. Workers with dynamic career and workers who retire early are those who are most penalised by the reform. Results are intuitive and in line with previous studies on the subject.
We prove the dynamic programming principle (DPP) in a class of problems where an agent controls a d-dimensional diffusive dynamics via both classical and singular controls and, moreover, is able to terminate the optimisation at a time of her choosing, prior to a given maturity. The time-horizon of the problem is random and it is the smallest between a fixed terminal time and the first exit time of the state dynamics from a Borel set. We consider both the cases in which the total available fuel for the singular control is either bounded or unbounded. We build upon existing proofs of DPP and extend results available in the traditional literature on singular control (Haussmann and Suo in SIAM J Control Optim 33(3):916–936, 1995; SIAM J Control Optim 33(3):937–959, 1995) by relaxing some key assumptions and including the discretionary stopping feature. We also connect with more general versions of the DPP (e.g., Bouchard and Touzi in SIAM J Control Optim 49(3):948–962, 2011) by showing in detail how our class of problems meets the abstract requirements therein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.