The shelf-life of fresh-cut tomatoes mainly depends on loss of tissue integrity and firmness that occurs also in intact fruits after long-term cold storage due to chilling injury. Round-fruit tomatoes (Solanum lycopersicum L.) cv. Jama were stored in 1.1-L plastic (polyethylene) fresh-cut produce containers as 10.0-mm-thick tomato slices and as intact tomatoes at 4 ± 0.5 °C. The aim of this work was to study the loss of membrane integrity and biochemical processes involved in membrane disruption. Electrolyte leakage and lipid peroxidation were studied at different stages of maturity: mature green, pink (PK), fully ripe and two different storage temperatures: 4 and 15 °C. The tomato slices of PK stage stored at 4 °C did not show changes for both parameters, while significant increase in membrane leakage and lipid peroxidation was observed at 15 °C, especially after 24 h of storage. The enzymes showed a simultaneous increase in their activities with a rise in electrolyte leakage and lipid peroxidation after 7 days of storage. Finally, phospholipase C (PLC) and phospholipase D (PLD) were investigated for intact fruit and tomato slices stored at 4 °C. The PLC had higher activity compared with PLD. In conclusion, the loss of membrane integrity in fresh-cut tomatoes is mainly affected by ripening stages, storage temperature and duration. The wounds enhance the PLC and PLD activities and they play a role late during storage
Due to novel and more demanding consumers’ requirements, breeding of vegetable crops confronts new challenges to improve the nutritional level and overall appearance of produce. Such objectives are not easy to achieve considering the complex genetic and physiological bases. Overtime, plant breeders relied on a number of technologies and methods to achieve ever changing targets. F1 hybrid seed production allowed the exploitation of heterosis and facilitated the combination of resistance and other useful genes in a uniform outperforming variety. Mutagenesis and tissue culture techniques permitted to induce novel variation, overcome crossing barriers, and speed up the achievement of true-breeding lines. Marker-assisted selection was one of the milestones in fastening selection, starting from the early ’90s in almost all seed companies. Only recently, however, are novel omics tools and genome editing being used as cutting-edge techniques to face old and new challenges in vegetable crops, with the potential to increase the qualitative value of crop cultivation and solve malnutrition in 10 billion people over the next 30 years. In this manuscript, the evolution of breeding approaches in vegetable crops for quality is reviewed, reporting case studies in tomato (Solanum lycopersicum L.) and cauliflower (Brassica oleracea var. botrytis L.) as model systems for fleshy fruit and floral edible parts, respectively.
Tomatoes are important sources of vitamins, minerals, and bioactive molecules. The fresh cut industry is interested in including tomatoes among the fresh cut vegetables. The wounds usually induce tissue degradation and release of juice, which can negatively affect quality during storage. The aim of this work was to investigate the role of ethylene in the processed vegetables using the never ripe (Nr) mutant and wild type tomatoes. The ethylene accumulation affected shelf life and quality based on the differential sensitivity of the genotypes to ethylene. Physiological and biochemical parameters related to membrane stability, phospholipases activities, ethylene and carbon dioxide accumulation were investigated in Nr mutant and wild type tomatoes as processed products and whole fruits. Results indicate that ethylene biosynthesis significantly regulates membrane breakdown. Nr tomatoes showed higher membrane stability, higher tolerance to wounding, and lower variability of physiological and biochemical parameters. Hence, this genotype can represent a genetic source of traits that can be exploited in fresh-cut tomato breeding programmes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.