We consider critical dense polymers L(1, 2). We obtain for this model the eigenvalues of the local integrals of motion of the underlying Conformal Field Theory by means of Thermodynamic Bethe Ansatz. We give a detailed description of the relation between this model and Symplectic
We consider the 2D critical Ising model with spatially periodic boundary conditions. It is shown that for a suitable reparametrization of the known Boltzmann weights the transfer matrix becomes a polynomial in the variable csc(4u), being u the spectral parameter. The coefficients of this polynomial are decomposed on the periodic Temperley-Lieb Algebra by introducing a lattice version of the Local Integrals of Motion.
Starting from the lattice A 3 realization of the Ising model defined on a strip with integrable boundary conditions, the exact spectrum (including excited states) of all the local integrals of motion is derived in the continuum limit by means of TBA techniques. It is also possible to follow the massive flow of this spectrum between the UV c = 1/2 conformal fixed point and the massive IR theory. The UV expression of the eigenstates of such integrals of motion in terms of Virasoro modes is found to have only rational coefficients and their fermionic representation turns out to be simply related to the quantum numbers describing the spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.