Background Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non‐ischemic perfusion for our ongoing pig‐to‐baboon cardiac xenotransplantation project. Methods Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1‐ KO/hCD46/hTBM) as donors and captive‐bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non‐ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin‐containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti‐non‐Gal‐antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient’s kidney, liver and coagulation functions. Results In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti‐non‐Gal‐antibodies were similar in recipients receiving grafts from either IC or CP preservation. Conclusions While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi‐organ failure in more than half of the xenotransplantation experiments. In contrast, cold non‐ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long‐term results after cardiac xenotransplantation.
BackgroundPerioperative monitoring and hemodynamic management after heterotopic thoracic cardiac xenotransplantation is challenging due to 2 independently beating hearts. Telemetry allows continuous monitoring of hemodynamic parameters of both the donor and recipient hearts. We describe our experience and report on the validity of a telemetric system during and after surgery.Material/MethodsWireless telemetry transmitters were implanted in 3 baboons receiving porcine donor hearts. Left ventricular pressure and ECG were assessed from the donor heart, whereas aortic pressure and temperature were assessed from the recipient. Telemetric data were validated with invasive blood pressure measurements.ResultsTelemetric blood pressure was lower than invasive blood pressure. Intraoperatively, the probe in the graft’s left ventricle measured negative end-diastolic pressures. Telemetry allowed simple discrimination between donor’s and recipient’s heart rates. Body temperature was underestimated by telemetry. Telemetric monitoring facilitates recognition of graft arrhythmias and volume demand.ConclusionsIn heterotopic thoracic cardiac xenotransplantation, telemetric implants are useful tools to continuously monitor the animals’ hemodynamic parameters and to discriminate donor and recipient organs. Accuracy is sufficient for systemic pressure measurement, but perioperative use of left ventricular end-diastolic pressure as a surrogate parameter for graft function is not advisable. Temperature measurements by telemetry do not reflect body core temperature.
Intensive intra- and postoperative monitoring and care is required in both transplantation techniques as a requirement for successful weaning from CPB and respirator. After htHTx, the animals needed less catecholamines and were hemodynamically more stable. Even though pulmonary function was often impaired after htHTx, weaning from the respirator and extubation was more successful in this group.
Background Mechanical ventilation has side effects such as ventilator-induced diaphragm dysfunction, resulting in prolonged intensive care unit length of stays. Artificially evoked diaphragmatic muscle contraction may potentially maintain diaphragmatic muscle function and thereby ameliorate or counteract ventilator-induced diaphragm dysfunction. We hypothesized that bilateral non-invasive electromagnetic phrenic nerve stimulation (NEPNS) results in adequate diaphragm contractions and consecutively in effective tidal volumes. Results This single-centre proof-of-concept study was performed in five patients who were 30 [IQR 21–33] years old, 60% (n = 3) females and undergoing elective surgery with general anaesthesia. Following anaesthesia and reversal of muscle relaxation, patients received bilateral NEPNS with different magnetic field intensities (10%, 20%, 30%, 40%); the stimulation was performed bilaterally with dual coils (connected to one standard clinical magnetic stimulator), specifically designed for bilateral non-invasive electromagnetic nerve stimulation. The stimulator with a maximal output of 2400 Volt, 160 Joule, pulse length 160 µs at 100% intensity was limited to 50% intensity, i.e. each single coil had a maximal output of 0.55 Tesla and 1200 Volt. There was a linear relationship between dosage (magnetic field intensity) and effect (tidal volume, primary endpoint, p < 0.001). Mean tidal volume was 0.00, 1.81 ± 0.99, 4.55 ± 2.23 and 7.43 ± 3.06 ml/kg ideal body weight applying 10%, 20%, 30% and 40% stimulation intensity, respectively. Mean time to find an initial adequate stimulation point was 89 (range 15–441) seconds. Conclusions Bilateral non-invasive electromagnetic phrenic nerve stimulation generated a tidal volume of 3–6 ml/kg ideal body weight due to diaphragmatic contraction in lung-healthy anaesthetized patients. Further perspectives in critically ill patients should include assessment of clinical outcomes to confirm whether diaphragm contraction through non-invasive electromagnetic phrenic nerve stimulation potentially ameliorates or prevents diaphragm atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.