Symmetric α-stable distribution GARCH-type models Indirect inference Maximum likelihood Leverage effects Student's t distribution a b s t r a c t Financial returns exhibit conditional heteroscedasticity, asymmetric responses of their volatility to negative and positive returns (leverage effects) and fat tails. The α-stable distribution is a natural candidate for capturing the tail-thickness of the conditional distribution of financial returns, while the GARCH-type models are very popular in depicting the conditional heteroscedasticity and leverage effects. However, practical implementation of α-stable distribution in finance applications has been limited by its estimation difficulties.The performance of the indirect inference approach using GARCH models with Student's t distributed errors as auxiliary models is compared to the maximum likelihood approach for estimating GARCH-type models with symmetric α-stable innovations. It is shown that the expected efficiency gains of the maximum likelihood approach come at high computational costs compared to the indirect inference method.
This paper should not be reported as representing the views of the European Central Bank (ECB). The views expressed are those of the authors and do not necessarily reflect those of the ECB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.