The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. The cultivation of resistant V. vinifera varieties would be a sustainable way to reduce the damage caused by the pathogen and the impact of disease management, which involves the economic, health and environmental costs of frequent fungicide application. We report the finding of unique downy mildew resistance traits in a winemaking cultivar from the domestication center of V. vinifera, and characterize the expression of a range of genes associated with the resistance mechanism. Based on comparative experimental inoculations, confocal microscopy and transcriptomics analyses, our study shows that V. vinifera cv. Mgaloblishvili, native to Georgia (South Caucasus), exhibits unique resistance traits against P. viticola. Its defense response, leading to a limitation of P. viticola growth and sporulation, is determined by the overexpression of genes related to pathogen recognition, the ethylene signaling pathway, synthesis of antimicrobial compounds and enzymes, and the development of structural barriers. The unique resistant traits found in Mgaloblishvili highlight the presence of a rare defense system in V. vinifera against P. viticola which promises fresh opportunities for grapevine genetic improvement.
Bois noir, a disease of the grapevine yellows complex, is associated with ‘Candidatus Phytoplasma solani’ and transmitted to grapevines in open fields by the cixiids Hyalesthes obsoletus and Reptalus panzeri. In vine-growing areas where the population density of these vectors is low within the vineyard, the occurrence of bois noir implies the existence of alternative vectors. The aim of this study was to identify alternative vectors through screening of the Auchenorrhyncha community, phytoplasma typing by stamp gene sequence analyses, and transmission trials. During field activities, conducted in Northern Italy in a vineyard where the bois noir incidence was extremely high, nine potential alternative insect vectors were identified according to high abundance in the vineyard agro-ecosystem, high infection rate, and harbouring phytoplasma strains characterized by stamp gene sequence variants found also in symptomatic grapevines. Transmission trials coupled with molecular analyses showed that at least eight species (Aphrodes makarovi, Dicranotropis hamata, Dictyophara europaea, Euscelis incisus, Euscelidius variegatus, Laodelphax striatella, Philaenus spumarius, and Psammotettix alienus/confinis) are alternative vectors of ‘Candidatus Phytoplasma solani’ to grapevines. These novel findings highlight that bois noir epidemiology in vineyard agro-ecosystems is more complex than previously known, opening up new perspectives in the disease management.
Plants develop in a microbe-rich environment and must interact with a plethora of microorganisms, both pathogenic and beneficial. Indeed, such is the case of Pseudomonas , and its model organisms P. fluorescens and P. syringae , a bacterial genus that has received particular attention because of its beneficial effect on plants and its pathogenic strains. The present study aims to compare plant-beneficial and pathogenic strains belonging to the P. syringae species to get new insights into the distinction between the two types of plant–microbe interactions. In assays carried out under greenhouse conditions, P. syringae pv. syringae strain 260-02 was shown to promote plant-growth and to exert biocontrol of P. syringae pv. tomato strain DC3000, against the Botrytis cinerea fungus and the Cymbidium Ringspot Virus . This P. syringae strain also had a distinct volatile emission profile, as well as a different plant-colonization pattern, visualized by confocal microscopy and gfp labeled strains, compared to strain DC3000. Despite the different behavior, the P. syringae strain 260-02 showed great similarity to pathogenic strains at a genomic level. However, genome analyses highlighted a few differences that form the basis for the following hypotheses regarding strain 260-02. P. syringae strain 260-02: (i) possesses non-functional virulence genes, like the mangotoxin-producing operon Mbo ; (ii) has different regulation pathways, suggested by the difference in the autoinducer system and the lack of a virulence activator gene; (iii) has genes encoding DNA methylases different from those found in other P. syringae strains, suggested by the presence of horizontal-gene-transfer-obtained methylases that could affect gene expression.
Phytoplasmas associated with Flavescence dorée (FDp) grapevine disease are quarantine pathogens controlled through mandatory measures including the prompt eradication and destruction of diseased plants, and the insecticide treatments against the insect vector, the ampelophagous leafhopper Scaphoideus titanus. In the present study, a multidisciplinary approach has been applied to investigate the FDp ecological cycle in a test vineyard agro-ecosystem in Canton Ticino, south Switzerland. Despite the scarce population density of S. titanus, a regular trend of new infections (3.4% of the total vines) through the years was observed. The leafhopper Orientus ishidae was found as the most abundant among the captured insect species known as phytoplasma vectors (245 out of 315 specimens). The population of O. ishidae was evidenced prevalently (167 specimens) in the south-western side of the vineyard and within the neighbouring forest constituted mainly by hazel (Corylus avellana) and willow (Salix spp.). These plant species were found infected by FDp related strains (30% of analysed trees) for the first time in this study. Interestingly, O. ishidae was found to harbour FDp related strains in high percentage (26% of the analysed pools). In addition, 16SrV phytoplasma group was detected for the first time in the insect Hyalesthes obsoletus and a FDp related strain in Thamnotettix dilutior, present in low populations within the test vineyard. Molecular characterisation and phylogenetic analyses of methionine aminopeptidase (map) gene sequences of FDp and related strains, here identified, revealed the great prevalence of the map-type FD2 in grapevines (97%) and in O. ishidae pools (72%). Such a map-type was found also in hazel and in T. dilutior, but not in S. titanus. Moreover, map-types FD1 and FD3 were identified for the first time in Switzerland in several host plants and phytoplasma vectors, including grapevine (FD1), S. titanus (FD1) and O. ishidae (FD1 and FD3). Based on the data obtained in this study, it is reasonable to hypothesise that the ecological cycle of FDp could be related not exclusively to the grapevine-specific feeding diet of S. titanus, but it could include other insect vector(s) and/or plant host(s). Further studies will be needed to prove the role of O. ishidae as vector able to transmit FDp from wild plants (e.g. hazel) to grapevine.
The P‐stereogenic PN(H)P tridentate ligand HN(CH2CH2)2P(Me)R (R=Cy, 1 a; R=tBu, 1 b) gives the Mn(I) complexes [Mn(CO)3(PN(H)P)]Br, which were tested in the asymmetric H2 hydrogenation of ketones. The amido species [Mn(CO)2(PNP)], hydrides [MnH(CO)2(PN(H)P)], and the alkoxide complex were detected by NMR spectroscopy. The manganese(I) derivative [Mn(CO)3(1 a)]Br was compared to its iron(II) analogue [FeHBr(CO)(1 a)] by kinetic and DFT studies. The DFT study suggests that both Mn(I) and Fe(II) operate via a bifunctional mechanism for H+/H− transfer with structurally similar enantiodetermining transition states and hence comparable enantioselectivity. The Mn(I) catalyst is less active than its Fe(II) analogue (k(Fe)/k(Mn)=ca. 30), which we attribute to the higher stability of the Mn(I) resting species, the off‐cycle alkoxo complex [Mn(OCH(Me)Ph))(CO)2(1 a)] that follows from the larger π delocalization onto the additional CO ligand as compared to [FeH(OCH(Me)Ph))(CO)(1 a)].magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.