In order to improve the efficiency of perovskite solar cells (PSCs), careful device design and tailored interface engineering are needed to enhance optoelectronic properties and the charge extraction process at the selective electrodes. Here, we use two-dimensional transition metal carbides (the MXene Ti3C2TX) with various termination groups (TX) to tune the work function (WF) of the perovskite absorber and the TiO2 electron transport layer (ETL), and to engineer the perovskite/ETL interface. Ultraviolet photoemission spectroscopy measurements and Density Functional Theory calculations show that the addition of Ti3C2TX to halide perovskite and TiO2 layers permits to tune the materials' WFs, without affecting other electronic properties. Moreover, the dipole induced by the Ti3C2TX at the perovskite/ETL interface can be used to change the band alignment between these layers. The combined action of WF tuning and interface engineering can lead to substantial performance improvements in MXene-modified PSCs, as shown by the 26% increase of power conversion efficiency and hysteresis reduction with respect to reference cells without Mxene.
As the size of modern electronic and optoelectronic devices is scaling down at a steady pace, atomistic simulations become necessary for an accurate modelling of their structural, electronic, optical and transport properties. Such microscopic approaches are important in order to account correctly for quantum-mechanical phenomena affecting both electronic and transport properties of nanodevices. Effective bulk parameters cannot be used for the description of the electronic states since interfacial properties play a crucial role and semiclassical methods for transport calculations are not suitable at the typical scales where the device behaviour is characterized by coherent tunnelling.Quantum-mechanical computations with atomic resolution can be achieved using localized basis sets for the description of the system Hamiltonian. Such methods have been extensively used to predict optical and electronic properties of molecules and mesoscopic systems.The most important approaches formulated in terms of localized basis sets, from empirical tight-binding (TB) to first principles methods, are here reviewed. Being a full band approach, even the simplest TB overcomes the limitations of envelope function approximations, such as the well-known k • p, and allows to retain atomic details and realistic band structures. First principles calculations, on the other hand, can give a very accurate description of the electronic and structural properties.Transport in nanoscale devices cannot neglect quantum effects such as coherent tunnelling. In this context, localized basis sets are well-suited for the formal treatment of quantum transport since they provide a simple mathematical framework to treat open-boundary conditions, typically encountered when the system eigenstates carry a steady-state current.We review the principal methods used to formulate quantum transport based on local orbital sets via transfer matrix and Green's function (GF) techniques. We start from a general introduction to the scattering theory which leads to the Landauer formula, and then report on the most recent progresses of the field including the application of the self-consistent non-equilibrium GF formalism.
White light emitting diodes (LEDs) based on III-nitride InGaN/GaN quantum wells currently offer the highest overall efficiency for solid state lighting applications. Although current phosphor-converted white LEDs have high electricity-to-light conversion efficiencies, it has been recently pointed out that the full potential of solid state lighting could be exploited only by color mixing approaches without employing phosphor-based wavelength conversion. Such an approach requires direct emitting LEDs of different colors, including, in particular, the green-yellow range of the visible spectrum. This range, however, suffers from a systematic drop in efficiency, known as the "green gap," whose physical origin has not been understood completely so far. In this work, we show by atomistic simulations that a consistent part of the green gap in c-plane InGaN/GaN-based light emitting diodes may be attributed to a decrease in the radiative recombination coefficient with increasing indium content due to random fluctuations of the indium concentration naturally present in any InGaN alloy.
We study heating and heat dissipation of a single C60 molecule in the junction of a scanning tunneling microscope (STM) by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the STM tip contacts the fullerene the molecule can sustain much larger currents. Transport simulations explain these effects by molecular heating due to resonant electronphonon coupling and molecular cooling by vibrational decay into the tip upon contact formation.The paradigm of molecular electronics is the use of a single molecule as an electronic device [1]. This concept is sustained on the basis that a single molecule (or a molecular thin film) should withstand the flow of electron current densities as large as 10 10 A/m 2 without degrading. A fraction of these electrons heat the molecular junction through inelastic scattering with the molecule [2]. The temperature at the junction is a consequence of an equilibrium between heating due to electron flow and heat dissipation out of the junction. The former is dominated by the coupling of electronic molecular states with molecular vibrons [2,3,4]. The latter depends on the strength of the vibrational coupling between the "hot" molecular vibrons and the bath degrees of freedom of the "cold" electrodes.Theoretical studies predicted that current-induced heating in molecular junctions can be large enough to affect the reliability of molecular devices [2]. However, experimental access to this information is very limited. Recent studies of the thermally activated force during molecular detachment from a lead [5,6] and of structural fluctuation during attachment to it [7] reveal that the temperature of a molecular junction can reach several hundred degrees under normal working conditions, thus revealing that present devices work on the limit of practical operability [8]. Heat dissipation away from the junction becomes an important issue.In this work, we characterize the mechanisms of heating and heat dissipation induced by the flow of current across a single molecule. Our approach is based on detecting the limiting electron current inducing molecular decomposition at varying applied source-drain bias (i.e. the maximum power one molecule can sustain). We use a low temperature scanning tunneling microscope (STM) to control the flow of electrons through a single C 60 molecule at an increasing rate until the molecule decomposes. By comparing the power applied for decomposition (P dec ) in tunneling regime and in contact with the STM tip we find that it depends significantly on two factors: i) P dec decreases when molecular resonances participate in the transport, evidencing that they enhance the heating; ii) P dec increases as the molecule is contacted to the source and drain electrodes, revealing the heat dissipation by phonon coupling to the leads. A good contact between the single-molecule (SM) device and the leads is hence an important requirement for its ope...
We investigate the influence of molecular vibrations on the tunneling of electrons through an octane−thiolate sandwiched between two gold contacts. The coherent and incoherent tunneling currents are computed using the non-equilibrium Green's functions formalism. Both the system Hamiltonian and the electron−phonon interaction are obtained from first-principles DFT calculations, including a microscopic treatment of the gold contacts. This method allows to study explicitly the influence of each individual vibrational mode and show a detailed analysis of the power dissipated in the molecular wire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.