Preventive healthcare asks for the development of cheap, precise and non-invasive sensor devices for the early detection of diseases and continuous population screening. The actual techniques used for diagnosis, e.g. MRI and PET, or for biochemical marker sensing, e.g. immunoassays, are not suitable for continuous monitoring since they are expensive and prone to false positive responses. Synthetic supramolecular receptors offer new opportunities for the creation of specific, selective and cheap sensor devices for biological sensing of specific target molecules in complex mixtures of organic substances. The fundamental challenges faced in developing such devices are the precise transfer of the molecular recognition events at the solid-liquid interface and its transduction into a readable signal. In this review we present the progress made so far in turning synthetic macrocyclic hosts, namely cyclodextrins, calixarenes, cucurbiturils and cavitands, into effective biochemical sensors and the strategies utilized to solve the above mentioned issues. The performances of the developed sensing devices based on these receptors in detecting specific biological molecules, drugs and proteins are critically discussed.
Scintillators, materials that produce light pulses upon interaction with ionizing radiation, are widely employed in radiation detectors. In advanced medical-imaging technologies, fast scintillators enabling a time resolution of tens of picoseconds are required to achieve high-resolution imaging at the millimetre length scale. Here we demonstrate that composite materials based on fluorescent metal-organic framework (MOF) nanocrystals can work as fast scintillators. We present a prototype scintillator fabricated by embedding MOF nanocrystals in a polymer. The MOF comprises zirconium oxo-hydroxy clusters, high-Z linking nodes interacting with the ionizing radiation, arranged in an orderly fashion at a nanometric distance from 9,10-diphenylanthracene ligand emitters. Their incorporation in the framework enables fast sensitization of the ligand fluorescence, thus avoiding issues typically arising from the intimate mixing of complementary elements. This proof-of-concept prototype device shows an ultrafast scintillation rise time of ~50 ps, thus supporting the development of new scintillators based on engineered fluorescent MOF nanocrystals.
We report on the eligibility of tetraphosphonate resorcinarene cavitands for the molecular recognition of amino acids. We determined the crystal structure of 13 complexes of the tetraphosphonate cavitand Tiiii[H, CH3, CH3] with amino acids. (1)H NMR and (31)P NMR experiments and ITC analysis were performed to probe the binding between cavitand Tiiii[C3H7, CH3, C2H5] or the water-soluble counterpart Tiiii[C3H6Py(+)Cl(-), CH3, C2H5] and a selection of representative amino acids. The reported studies and results allowed us (i) to highlight the noncovalent interactions involved in the binding event in each case; (ii) to investigate the ability of tetraphosphonate cavitand receptors to discriminate between the different amino acids; (iii) to calculate the Ka values of the different complexes formed and evaluate the thermodynamic parameters of the complexation process, dissecting the entropic and enthalpic contributions; and (iv) to determine the solvent influence on the complexation selectivity. By moving from methanol to water, the complexation changed from entropy driven to entropy opposed, leading to a drop of almost three orders in the magnitude of the Ka. However, this reduction in binding affinity is associated with a dramatic increase in selectivity, since in aqueous solutions only N-methylated amino acids are effectively recognized. The thermodynamic profile of the binding does not change in PBS solution. The pivotal role played by cation-π interactions is demonstrated by the linear correlation found between the log Ka in methanol solution and the depth of (+)N-CH3 cavity inclusion in the molecular structures. These findings are relevant for the potential use of phosphonate cavitands as synthetic receptors for the detection of epigenetic modifications of histones in physiological media.
In this work we report a comprehensive study leading to the fabrication of a prototype sensor for environmental benzene monitoring. The required high selectivity and ppb-level sensitivity are obtained by coupling a silicon-integrated concentration unit containing the specifically designed EtQxBox cavitand to a miniaturized PID detector. In the resulting stand-alone sensor, the EtQxBox receptor acts at the same time as highly sensitive preconcentrator for BTEX and GC-like separation phase, allowing for the selective desorption of benzene over TEX. The binding energies of the complexes between EtQxBox and BTX are calculated through molecular mechanics calculations. The examination of the corresponding crystal structures confirms the trend determined by computational studies, with the number of C-H···N and CH···π interactions increasing from 6 to 9 along the series from benzene to o-xylene. The analytical performances of EtQxBox are experimentally tested via SPME, using the cavitand as fiber coating for BTEX monitoring in air. The cavitand EFs are noticeably higher than those obtained by using the commercial CAR-DVB-PDMS. The LOD and LOQ are calculated in the ng/m range, outperforming the commercial available systems in BTEX adsorption. The desired selective desorption of benzene is achieved by applying a smart temperature program on the EtQxBox mesh, which starts releasing benzene at lower temperatures than TEX, as predicted by the calculated binding energies. The sensor performances are experimentally validated and ppb level sensitivity toward the carcinogenic target aromatic benzene was demonstrated, as required for environmental benzene exposure monitoring in industrial applications and outdoor environment.
The synthesis and the chemisorption from solution of a terbium bis-phthalocyaninato complex suitable for the functionalization of lanthanum strontium manganite (LSMO) are reported. Two phosphonate groups are introduced in the double decker structure in order to allow the grafting to the ferromagnetic substrate actively used as injection electrode in organic spin valve devices. The covalent bonding of functionalized terbium bis-phthalocyaninato system on LSMO surface preserves its molecular properties at the nanoscale. X-ray photoelectron spectroscopy confirms the integrity of the molecules on the LSMO surface and a small magnetic hysteresis reminiscent of the typical single molecule magnet behavior of this system is detected on surface by X-ray magnetic circular dichroism experiments. The effect of the hybrid magnetic electrode on spin polarized injection is investigated in vertical organic spin valve devices and compared to the behavior of similar spin valves embedding a single diamagnetic layer of alkyl phosphonate molecules analogously chemisorbed on LSMO. Magnetoresistance experiments have evidenced significant alterations of the magneto-transport by the terbium bisphthalocyaninato complex characterized by two distinct temperature regimes, below and above 50 K, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.