Medicinal
chemistry plays a fundamental and underlying role in
chemical biology, pharmacology, and medicine to discover safe and
efficacious drugs. Small molecule medicinal chemistry relies on iterative
learning cycles composed of compound design, synthesis, testing, and
data analysis to provide new chemical probes and lead compounds for
novel and druggable targets. Using traditional approaches, the time
from hypothesis to obtaining the results can be protracted, thus limiting
the number of compounds that can be advanced into clinical studies.
This challenge can be tackled with the recourse of enabling technologies
that are showing great potential in improving the drug discovery process.
In this Perspective, we highlight recent developments toward innovative
medicinal chemistry strategies based on continuous flow systems coupled
with automation and bioassays. After a discussion of the aims and
concepts, we describe equipment and representative examples of automated
flow systems and end-to-end prototypes realized to expedite medicinal
chemistry discovery cycles.
A telescoped multistep process to
provide the continuous delivery
of 16-dehydropregnenolone acetate (16-DPA) from diosgenin is described.
The method was evaluated through batch screenings that helped to identify
critical bottlenecks and flowability, and the best conditions were
optimized in flow systems before the individual steps were telescoped
together into a single integrated flow process. Further highlights
of our approach include the use of efficient in-line extraction operations
and reaction monitoring, the avoidance of time-consuming purifications
between steps, and improvement of efficiency and safety standards.
A novel flow-based approach for the preparation of benzimidazol-2-one (1) scaffold by the 1,1′-carbonyldiimidazole (CDI)-promoted cyclocarbonylation of o-phenylenediamine (2) is reported. Starting from a preliminary batch screening, the model reaction was successfully translated under flow conditions and optimised by means of design of experiment (DoE). The method allowed the efficient preparation of this privileged scaffold and to set up a general protocol for the multigram-scale preparation in high yield, purity, and productivity, and was successfully applied for the multigram flow synthesis of N-(2-chlorobenzyl)-5-cyano-benzimidazol-2-one, which is a key synthon for hit-to-lead explorations in our anti-inflammatory drug discovery program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.