Integrating functional molecules into single-molecule devices is a key step toward the realization of future computing machines based on the smallest possible components. In this context, photoswitching molecules that can make a transition between high and low conductivity in response to light are attractive candidates. Here we present the synthesis and conductance properties of a new type of robust molecular photothermal switch based on the norbornadiene (NB)–quadricyclane (QC) system. The transport through the molecule in the ON state is dominated by a pathway through the π-conjugated system, which is no longer available when the system is switched to the OFF state. Interestingly, in the OFF state we find that the same pathway contributes only 12% to the transport properties. We attribute this observation to the strained tetrahedral geometry of the QC. These results challenge the prevailing assumption that current will simply flow through the shortest through-bond path in a molecule.
The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green’s function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to interrogate basic structure-transport relations at the single-molecule limit
The single-molecule force spectroscopy of a prototypical class of hydrogen-bonded complexes is computationally investigated. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The force−extension (F−L) isotherms of the host−guest complexes are simulated using classical molecular dynamics and the MM3 force field, for which a refined set of hydrogen bond parameters was developed from MP2 ab initio computations. The F−L curves exhibit peaks that signal conformational changes during elongation, the most prominent of which is in the 60−180 pN range and corresponds to the force required to break the hydrogen bonds. These peaks in the F−L curves are shown to be sensitive to relatively small changes in the chemical structure of the host molecule. Thermodynamic insights into the supramolecular assembly were obtained by reconstructing, from the force measurements, the Helmholtz free energy profile along the extension coordinate and decomposing it into energetic and entropic contributions. The complexation is found to be energetically driven and entropically penalized, with the energy contributions overcoming the entropy penalty and driving molecular recognition. Further, the molecular nanoconfinement introduced by the macroscopic surfaces in this class of experiments is shown to significantly accentuate the mechanical and energetic stability of the hydrogen-bonded complexes, thus enhancing the ability of the force spectroscopy to probe this type of molecular recognition events.
Understanding energy transfer is of vital importance in a diverse range of applications from biological systems to photovoltaics. The ability to tune excitonic coupling in any of these systems, however, is generally limited. In this work, we have simulated a new class of single-molecule spectroscopy in which force microscopy is used to control the excitonic coupling between chromophores. Here we demonstrate that the excitonic coupling can be controlled by mechanical manipulation of the molecule (perylenediimide dimers and terrylenediimide-perylenediimide heterodimers) and can be tuned over a broad range of values (0.02-0.15 eV) that correspond to different regimes of exciton dynamics going from the folded to the elongated structure of the dimer. In all of the systems considered here, the switching from high to low coupling takes place simultaneously with the mechanical deformation detected by a strong increase and subsequent decay of the force. These simulations suggest that single-molecule force spectroscopy can be used to understand and eventually aid the design of excitonic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.