The detection of biological agents using optical systems is an open field of research. Currently, different spectroscopic techniques allow to detect and classify chemical agents while a fast and accurate technique able to identify biological agents is still under investigation. Some optical techniques, such as Laser-Induced Breakdown Spectroscopy (LIBS) or Laser-Induced Fluorescence (LIF), are already used as classification methods. However, the presence of background, spectrum similarities and other confounders make these techniques not very specific. This work shows a new method to achieve better performances in terms of classification and concentration evaluations. The method is based on the Weighted Least Square Minimization method. In fact, by using ad hoc weights, the LSM looks at specific features of the spectra, resulting in higher accuracy. In order to make a systematic analysis, numerical tests have been conducted. With these tests, the authors were able to highlight the various advantages and drawbacks of the new methodology proposed. Then, the method was applied to some LIF measurements to investigate the applicability of the method to preliminary experimental cases. The results show that, by using this new weighted LSM, it is possible to achieve better classification and concentration evaluation performances. Finally, the possible application of the new method is discussed.
Infectious diseases afflict human beings since ancient times. We can classify the infectious disease in two principal types: the emerging diseases, that are caused by new pathogens, and the re-emerging diseases, due to a new spread of a known pathogen. Both types can then be subdivided in natural, accidental or intentional spreads. The risk associated to infectious diseases strongly increased in the last decades, especially because of the globalisation, which leads to a denser and more efficient link between nations, involving that a local infectious may easily spread worldwide, such as the SARS-CoV-2 in 2019-2020. The development of new methods to predict the spread of diseases is crucial. However, sometimes the variables are too many that classical algorithms fail in the prediction. Aim of this work is to investigate the use of an ensemble of recurrent neural networks for disease prediction, using real flu's data to train and develop an instrument with the capability to determine the future flues. Two different types of study have been conducted. The first study investigates the influence of the neural network architecture, and it has been performed using 12 seasons to train the model and 3 seasons to test it. The second test aims to investigate the number of seasons needed to have a good prediction for future ones. The results demonstrated that this approach could ensure very high performances also with simple architectures. The ensemble approach allows to have information about the uncertainty of the prediction, allowing also to take countermeasures as a function of that value. In the future, the use of this approach may be applied to many other types of disease.
Laser-induced fluorescence (LIF) provides the ability to distinguish organic materials by a fast and distant in situ analysis. When detecting the substances directly in the environment, e.g., in an aerosol cloud or on surfaces, additional fluorescence signals of other fluorophores occurring in the surrounding are expected to mix with the desired signal. We approached this problem with a simplified experimental design for an evaluation of classification algorithms. An upcoming question for enhanced identification capabilities is the case of mixed samples providing different signals from different fluorophores. For this work, mixtures of up to four common fluorophores (NADH, FAD, tryptophan and tyrosine) were measured by a dual-wavelength setup and spectrally analyzed. Classification and regression are conducted with neural networks and show an excellent performance in predicting the ratios of the selected ingredients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.