c Cells respond to environmental stimuli by fine-tuned regulation of gene expression. Here we investigated the dose-dependent modulation of gene expression at high temporal resolution in response to nutrient and stress signals in yeast. The GAL1 activity in cell populations is modulated in a well-defined range of galactose concentrations, correlating with a dynamic change of histone remodeling and RNA polymerase II (RNAPII) association. This behavior is the result of a heterogeneous induction delay caused by decreasing inducer concentrations across the population. Chromatin remodeling appears to be the basis for the dynamic GAL1 expression, because mutants with impaired histone dynamics show severely truncated dose-response profiles. In contrast, the GRE2 promoter operates like a rapid off/on switch in response to increasing osmotic stress, with almost constant expression rates and exclusively temporal regulation of histone remodeling and RNAPII occupancy. The Gal3 inducer and the Hog1 mitogen-activated protein (MAP) kinase seem to determine the different dose-response strategies at the two promoters. Accordingly, GAL1 becomes highly sensitive and dose independent if previously stimulated because of residual Gal3 levels, whereas GRE2 expression diminishes upon repeated stimulation due to acquired stress resistance. Our analysis reveals important differences in the way dynamic signals create dose-sensitive gene expression outputs.C ells continuously adapt their protein composition to changing environmental conditions. The regulation of gene expression is one of the fundamental mechanisms to adjust the global protein repertoire of the cell in order to maintain cell function and integrity in response to environmental challenges. Budding yeast is a powerful model to unravel the modes of transcriptional adaptation at the levels both of specific genes and of the whole organism (1, 2). Additionally, the basic structure of the signaling cascades responding to environmental perturbations is conserved from yeast to humans. It implies the alteration of core kinase activities, which modulate the expression of defense genes through a range of specific transcription factors. Extensive knowledge which precisely describes the molecular machinery and its global impact on gene expression in response to many types of stress has accumulated (3-7). However, the vast majority of these studies are performed with harsh environmental insults and therefore saturating stimulation. As a consequence, only very limited information or approaches are available to understand how cells adapt their gene expression programs to small or gradual changes in their environment.It is assumed that cells have acquired mechanisms that ensure a transcriptional response which is finely adjusted according to the strength of the stress or stimulation. However, the nature of the signaling molecules which confer gradual transcription outputs remains to be determined in most cases. Fine-tuning of gene expression responses can occur with different purposes, and th...
A destabilized version of firefly luciferase was used in living yeast cells as a real-time reporter for gene expression. This highly sensitive and non-invasive system can be simultaneously used upon many different experimental conditions in small culture aliquots. This allows the dose-response behaviour of gene expression driven by any yeast promoter to be reported and can be used to quantify important parameters, such as the threshold, sensitivity, response time, maximal activity and synthesis rate for a given stimulus. We applied the luciferase assay to the nutrient-regulated GAL1 promoter and the stress-responsive GRE2 promoter. We find that luciferase expression driven by the GAL1 promoter responds dynamically to growing galactose concentrations, with increasing synthesis rates determined by the light increment in the initial linear phase of activation. In the case of the GRE2 promoter, we demonstrate that the very short-lived version of luciferase used here is an excellent tool to quantitatively describe transient transcriptional activation. The luciferase expression controlled by the GRE2 promoter responds dynamically to a gradual increase of osmotic or oxidative stress stimuli, which is mainly based on the progressive increase of the time the promoter remains active. Finally, we determined the dose-response behaviour of a single transcription factor binding site in a synthetic promoter context, using the stress response element (STRE) as an example. Taken together, the luciferase assay described here is an attractive tool to rapidly and precisely determine and compare kinetic parameters of gene expression.
Fine-tuned activation of gene expression in response to stress is the result of dynamic interactions of transcription factors with specific promoter binding sites. In the study described here we used a time-resolved luciferase reporter assay in living Saccharomyces cerevisiae yeast cells to gain insights into how osmotic and oxidative stress signals modulate gene expression in a dosesensitive manner. Specifically, the dose-response behavior of four different natural promoters (GRE2, CTT1, SOD2, and CCP1) reveals differences in their sensitivity and dynamics in response to different salt and oxidative stimuli. Characteristic dose-response profiles were also obtained for artificial promoters driven by only one type of stress-regulated consensus element, such as the cyclic AMP-responsive element, stress response element, or AP-1 site. Oxidative and osmotic stress signals activate these elements separately and with different sensitivities through different signaling molecules. Combination of stress-activated cis elements does not, in general, enhance the absolute expression levels; however, specific combinations can increase the inducibility of the promoter in response to different stress doses. Finally, we show that the stress tolerance of the cell critically modulates the dynamics of its transcriptional response in the case of oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.