Remarkable deregulation of microRNAs has been demonstrated in epithelial ovarian cancer (EOC). In particular, some of the let-7 miRNA family members have been proposed as tumor suppressors. Here, we explored the functional roles of let-7g in EOC. The ectopic overexpression of let-7g in OVCAR3 and HEY-A8 EOC cells induced i) a down-regulation of c-Myc and cyclin-D2 thus promoting cell cycle arrest, ii) a reduction of Vimentin, Snail and Slug thus counteracting the progression of epithelial to mesenchymal transition, iii) a chemosensitization to cis -platinum treatment. Next, analysis of human EOC tissues revealed that let-7g expression was significantly reduced in tumor tissue specimens of patients with EOC compared to their non-tumor counterparts ( p = 0.0002). Notably, low let-7g tissue levels were significantly associated with acquired chemoresistance of patients with late-stage of EOC (n = 17, p = 0.03194). This finding was further validated in the serum samples collected from the same cohort of patients (n = 17, p = 0.003). To conclude, we demonstrate that let-7g acts as tumor suppressor and might be used to disable EOC tumor progression and chemoresistance to cis -platinum-based chemotherapy. Furthermore, we propose that decreased expression of let-7g could serve as a tissue and serum biomarker able to predict the chemo-resistant features of EOC patients.
Reactive oxygen species (ROS) mediates cisplatin-induced cytotoxicity in tumor cells. However, when cisplatin-induced ROS do not reach cytotoxic levels, cancer cells may develop chemoresistance. This phenomenon can be attributed to the inherited high expression of antioxidant protein network. H-Ferritin is an important member of the antioxidant system due to its ability to store iron in a nontoxic form. Altered expression of H-Ferritin has been described in ovarian cancers; however, its functional role in cisplatin-based chemoresistance of this cancer type has never been explored. Here, we investigated whether the modulation of H-Ferritin might affect cisplatin-induced cytotoxicity in ovarian cancer cells. First, we characterized OVCAR3 and OVCAR8 cells for their relative ROS and H-Ferritin baseline amounts. OVCAR3 exhibited lower ROS levels compared to OVCAR8 and greater expression of H-Ferritin. In addition, OVCAR3 showed pronounced growth potential and survival accompanied by the strong activation of pERK/pAKT and overexpression of c-Myc and cyclin E1. When exposed to different concentrations of cisplatin, OVCAR3 were less sensitive than OVCAR8. At the lowest concentration of cisplatin (6 μM), OVCAR8 underwent a consistent apoptosis along with a downregulation of H-Ferritin and a consistent increase of ROS levels; on the other hand, OVCAR3 cells were totally unresponsive, H-Ferritin was almost unaffected, and ROS amounts met a slight increase. Thus, we assessed whether the modulation of H-Ferritin levels was able to affect the cisplatin-mediated cytotoxicity in both the cell lines. H-Ferritin knockdown strengthened cisplatin-mediated ROS increase and significantly restored sensitivity to 6 μM cisplatin in resistant OVCAR3 cells. Conversely, forced overexpression of H-Ferritin significantly suppressed the cisplatin-mediated elevation of intracellular ROS subsequently leading to a reduced responsiveness in OVCAR8 cells. Overall, our findings suggest that H-Ferritin might be a key protein in cisplatin-based chemoresistance and that its inhibition may represent a potential approach for enhancing cisplatin sensitivity of resistant ovarian cancer cells.
Cardiac remuscularization has been the stated goal of the field of regenerative cardiology since its inception. Along with the refreshment of lost and dysfunctional cardiac muscle cells, the field of cell therapy has expanded in scope encompassing also the potential of the injected cells as cardioprotective and cardio-reparative agents for cardiovascular diseases. The latter has been the result of the findings that cell therapies so far tested in clinical trials exert their beneficial effects through paracrine mechanisms acting on the endogenous myocardial reparative/regenerative potential. The endogenous regenerative potential of the adult heart is still highly debated. While it has been widely accepted that adult cardiomyocytes (CMs) are renewed throughout life either in response to wear and tear and after injury, the rate and origin of this phenomenon are yet to be clarified. The adult heart harbors resident cardiac/stem progenitor cells (CSCs/CPCs), whose discovery and characterization were initially sufficient to explain CM renewal in response to physiological and pathological stresses, when also considering that adult CMs are terminally differentiated cells. The role of CSCs in CM formation in the adult heart has been however questioned by some recent genetic fate map studies, which have been proved to have serious limitations. Nevertheless, uncontested evidence shows that clonal CSCs are effective transplantable regenerative agents either for their direct myogenic differentiation and for their paracrine effects in the allogeneic setting. In particular, the paracrine potential of CSCs has been the focus of the recent investigation, whereby CSC-derived exosomes appear to harbor relevant regenerative and reparative signals underlying the beneficial effects of CSC transplantation. This review focuses on recent advances in our knowledge about the biological role of exosomes in heart tissue homeostasis and repair with the idea to use them as tools for new therapeutic biotechnologies for “cell-less” effective cardiac regeneration approaches.
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert pleiotropic effects on cardiac cell biology which are not yet fully understood. Here we tested whether statin treatment affects resident endogenous cardiac stem/progenitor cell (CSC) activation in vitro and in vivo after myocardial infarction (MI). Statins (Rosuvastatin, Simvastatin and Pravastatin) significantly increased CSC expansion in vitro as measured by both BrdU incorporation and cell growth curve. Additionally, statins increased CSC clonal expansion and cardiosphere formation. The effects of statins on CSC growth and differentiation depended on Akt phosphorylation. Twenty-eight days after myocardial infarction by permanent coronary ligation in rats, the number of endogenous CSCs in the infarct border zone was significantly increased by Rosuvastatin-treatment as compared to untreated controls. Additionally, commitment of the activated CSCs into the myogenic lineage (c-kitpos/Gata4pos CSCs) was increased by Rosuvastatin administration. Accordingly, Rosuvastatin fostered new cardiomyocyte formation after MI. Finally, Rosuvastatin treatment reversed the cardiomyogenic defects of CSCs in c-kit haploinsufficient mice, increasing new cardiomyocyte formation by endogenous CSCs in these mice after myocardial infarction. In summary, statins, by sustaining Akt activation, foster CSC growth and differentiation in vitro and in vivo. The activation and differentiation of the endogenous CSC pool and consequent new myocyte formation by statins improve myocardial remodeling after coronary occlusion in rodents. Similar effects might contribute to the beneficial effects of statins on human cardiovascular diseases.
Introduction—The purpose of this study was to determine the relative impact of modifiable and non-modifiable risk factors in the development of gestational diabetes mellitus (GDM), with a particular focus on maternal preconception body mass index (BMI) and age, two important determinants of insulin resistance. Understanding the factors that contribute most to the current escalation of GDM rates in pregnant women could help to inform prevention and intervention strategies, particularly in areas where this female endocrine disorder has an elevated prevalence. Methods—A retrospective, contemporary, large population of singleton pregnant women from southern Italy who underwent 75 g OGTT for GDM screening was enrolled at the Endocrinology Unit, “Pugliese Ciaccio” Hospital, Catanzaro. Relevant clinical data were collected, and the characteristics of women diagnosed with GDM or with normal glucose tolerance were compared. The effect estimates of maternal preconception BMI and age as risk factors for GDM development were calculated through correlation and logistic regression analysis by adjusting for potential confounders. Results—Out of the 3856 women enrolled, 885 (23.0%) were diagnosed with GDM as per IADPSG criteria. Advanced maternal age (≥35 years), gravidity, reproductive history of spontaneous abortion(s), previous GDM, and thyroid and thrombophilic diseases, all emerged as non-modifiable risk factors of GDM, whereas preconception overweight or obesity was the sole potentially modifiable risk factor among those investigated. Maternal preconception BMI, but not age, had a moderate positive association with fasting glucose levels at the time of 75 g OGTT (Pearson coefficient: 0.245, p < 0.001). Abnormalities in fasting glucose drove the majority (60%) of the GDM diagnoses in this study. Maternal preconception obesity almost tripled the risk of developing GDM, but even being overweight resulted in a more pronounced increased risk of developing GDM than advanced maternal age (adjusted OR for preconception overweight: 1.63, 95% CI 1.320–2.019; adjusted OR for advanced maternal age: 1.45, 95% CI 1.184–1.776). Conclusions—Excess body weight prior to conception leads to more detrimental metabolic effects than advanced maternal age in pregnant women with GDM. Thus, in areas in which GDM is particularly common, such as southern Italy, measures aiming to counteracting maternal preconception overweight and obesity may be efficient in reducing GDM prevalence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.