This article aims to investigate how circuit-based hybrid Quantum Convolutional Neural Networks (QCNNs) can be successfully employed as image classifiers in the context of remote sensing. The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network. The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case, and tested on the EuroSAT dataset used as reference benchmark. The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts. Moreover, investigation of various quantum circuits shows that the ones exploiting quantum entanglement achieve the best classification scores. This study underlines the potentialities of applying quantum computing to an EO case study and provides the theoretical and experimental background for futures investigations.
This concept paper aims to provide a brief outline of quantum computers, explore existing methods of quantum image classification techniques, so focusing on remote sensing applications, and discuss the bottlenecks of performing these algorithms on currently available open source platforms. Initial results demonstrate feasibility. Next steps include expanding the size of the quantum hidden layer and increasing the variety of output image options.
This paper presents a novel method of landslide detection by exploiting the Mask R-CNN capability of identifying an object layout by using a pixel-based segmentation, along with transfer learning used to train the proposed model. A data set of 160 elements is created containing landslide and non-landslide images. The proposed method consists of three steps: (i) augmenting training image samples to increase the volume of the training data, (ii) fine tuning with limited image samples, and (iii) performance evaluation of the algorithm in terms of precision, recall and F1 measure, on the considered landslide images, by adopting ResNet-50 and 101 as backbone models. The experimental results are quite encouraging as the proposed method achieves Precision equals to 1.00, Recall 0.93 and F1 measure 0.97, when ResNet-101 is used as backbone model, and with a low number of landslide photographs used as training samples. The proposed algorithm can be potentially useful for land use planners and policy makers of hilly areas where intermittent slope deformations necessitate landslide detection as prerequisite before planning.
In this paper, the authors aim to combine the latest state of the art models in image recognition with the best publicly available satellite images to create a system for landslide risk mitigation. We focus first on landslide detection and further propose a similar system to be used for prediction. Such models are valuable as they could easily be scaled up to provide data for hazard evaluation, as satellite imagery becomes increasingly available. The goal is to use satellite images and correlated data to enrich the public repository of data and guide disaster relief efforts for locating precise areas where landslides have occurred. Different image augmentation methods are used to increase diversity in the chosen dataset and create more robust classification. The resulting outputs are then fed into variants of 3-D convolutional neural networks. A review of the current literature indicates there is no research using CNNs (Convolutional Neural Networks) and freely available satellite imagery for classifying landslide risk. The model has shown to be ultimately able to achieve a significantly better than baseline accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.