Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes
On the 21st of February 2020 a resident of the municipality of Vo, a small town near Padua, died of pneumonia due to SARS-CoV-2 infection. This was the first COVID-19 death detected in Italy since the emergence of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days. We collected information on the demography, clinical presentation, hospitalization, contact network and presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo at two consecutive time points. On the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI) 2.1-3.3%). On the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% CI 0.8-1.8%). Notably, 43.2% (95% CI 32.2-54.7%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic. The mean serial interval was 6.9 days (95% CI 2.6-13.4). We found no statistically significant difference in the viral load (as measured by genome equivalents inferred from cycle threshold data) of symptomatic versus asymptomatic infections (p-values 0.6 and 0.2 for E and RdRp genes, respectively, Exact Wilcoxon-Mann-Whitney test). Contact tracing of the newly infected cases and transmission chain reconstruction revealed that most new infections in the second survey were infected in the community before the lockdown or from asymptomatic infections living in the same household. This study sheds new light on the frequency of asymptomatic SARS-CoV-2 infection and their infectivity (as measured by the viral load) and provides new insights into its transmission dynamics, the duration of viral load detectability and the efficacy of the implemented control measures.
Standard neural networks and statistical methods are usually believed to be inadequate when dealing with complex structures because of their feature-based approach. In fact, feature-based approaches usually fail to give satisfactory solutions because of the sensitivity of the approach to the a priori selection of the features, and the incapacity to represent any specific information on the relationships among the components of the structures. However, we show that neural networks can, in fact, represent and classify structured patterns. The key idea underpinning our approach is the use of the so called "generalized recursive neuron", which is essentially a generalization to structures of a recurrent neuron. By using generalized recursive neurons, all the supervised networks developed for the classification of sequences, such as backpropagation through time networks, real-time recurrent networks, simple recurrent networks, recurrent cascade correlation networks, and neural trees can, on the whole, be generalized to structures. The results obtained by some of the above networks (with generalized recursive neurons) on the classification of logic terms are presented.
A structured organization of information is typically required by symbolic processing. On the other hand, most connectionist models assume that data are organized according to relatively poor structures, like arrays or sequences. The framework described in this paper is an attempt to unify adaptive models like artificial neural nets and belief nets for the problem of processing structured information. In particular, relations between data variables are expressed by directed acyclic graphs, where both numerical and categorical values coexist. The general framework proposed in this paper can be regarded as an extension of both recurrent neural networks and hidden Markov models to the case of acyclic graphs. In particular we study the supervised learning problem as the problem of learning transductions from an input structured space to an output structured space, where transductions are assumed to admit a recursive hidden statespace representation. We introduce a graphical formalism for representing this class of adaptive transductions by means of recursive networks, i.e., cyclic graphs where nodes are labeled by variables and edges are labeled by generalized delay elements. This representation makes it possible to incorporate the symbolic and subsymbolic nature of data. Structures are processed by unfolding the recursive network into an acyclic graph called encoding network. In so doing, inference and learning algorithms can be easily inherited from the corresponding algorithms for artificial neural networks or probabilistic graphical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.