Quantum statistical mechanics allows us to extract thermodynamic information from a microscopic description of a many-body system. A key step is the calculation of the density of states, from which the partition function and all finite-temperature equilibrium thermodynamic quantities can be calculated. In this work, we devise and implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer which is inspired by the kernel polynomial method. Classically, the kernel polynomial method allows to sample spectral functions via a Chebyshev polynomial expansion. Our algorithm computes moments of the expansion on quantum hardware using a combination of random state preparation for stochastic trace evaluation and a controlled unitary operator. We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18 qubits. This not only represents a state-of-the-art calculation of thermal properties of a many-body system on quantum hardware, but also exploits the controlled unitary evolution of a many-qubit register on an unprecedented scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.