Technology trends enable the integration of many processor cores in a System-on-Chip (SoC). In these complex architectures, several architectural parameters can be tuned to find the best trade-off in terms of multiple metrics such as energy and delay. The main goal of the MULTICUBE project consists of the definition of an automatic Design Space Exploration framework to support the design of next generation many-core architectures 1 .
Abstract. We present a phase field approach to wetting problems, related to the minimization of capillary energy. We discuss in detail both the Γ-convergence results on which our numerical algorithm are based, and numerical implementation. Two possible choices of boundary conditions, needed to recover Young's law for the contact angle, are presented. We also consider an extension of the classical theory of capillarity, in which the introduction of a dissipation mechanism can explain and predict the hysteresis of the contact angle. We illustrate the performance of the model by reproducing numerically a broad spectrum of experimental results: advancing and receding drops, drops on inclined planes and superhydrophobic surfaces.Mathematics Subject Classification. 76D45, 74N30, 49S05.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.