Monitoring instrumentation plays a major role in the study of natural phenomena and analysis for risk prevention purposes, especially when facing the management of critical events. Within the geotechnical field, data collection has traditionally been performed with a manual approach characterized by time-expensive on-site investigations and monitoring devices activated by an operator. Due to these reasons, innovative instruments have been developed in recent years in order to provide a complete and more efficient system thanks to technological improvements. This paper aims to illustrate the advantages deriving from the application of a monitoring approach, named Internet of natural hazards, relying on the Internet of things principles applied to monitoring technologies. One of the main features of the system is the ability of automatic tools to acquire and elaborate data independently, which has led to the development of dedicated software and web-based visualization platforms for faster, more efficient and accessible data management. Additionally, automatic procedures play a key role in the implementation of early warning systems with a near-real-time approach, providing a valuable tool to the decision-makers and authorities responsible for emergency management. Moreover, the possibility of recording a large number of different parameters and physical quantities with high sampling frequency allows to perform meaningful statistical analyses and identify cause–effect relationships. A series of examples deriving from different case studies are reported in this paper in order to present the practical implications of the IoNH approach application to geotechnical monitoring.
During recent years, the availability of innovative monitoring instrumentation has been a fundamental component in the development of efficient and reliable early warning systems (EWS). In fact, the potential to achieve high sampling frequencies, together with automatic data transmission and elaboration are key features for a near-real time approach. This paper presents a case study located in Central Italy, where the realization of an important state route required a series of preliminary surveys. The monitoring system installed on site included manual inclinometers, automatic modular underground monitoring system (MUMS) inclinometers, piezometers, and geognostic surveys. In particular, data recorded by innovative instrumentation allowed for the detection of major slope displacements that ultimately led to the landslide collapse. The implementation of advanced tools, featuring remote and automatic procedures for data sampling and elaboration, played a key role in the critical event identification and prediction. In fact, thanks to displacement data recorded by the MUMS inclinometer, it was possible to forecast the slope failure that was later confirmed during the following site inspection. Additionally, a numerical analysis was performed to better understand the mechanical behavior of the slope, back-analyze the monitored event, and to assess the stability conditions of the area of interest.
Ground temperature at shallow depths (< 50 m) is not stable, nor in space, neither in time, and its behaviour is the result of the superimposition of eff ects of heat pulses of diff erent origin: solar, geothermal and anthropic. The correct assessment of ground temperature is a crucial point when designing a shallow geothermal energy system. In geothermal closed loop projects using short borehole heat exchangers, the ground temperature has more variability and aff ects the rate of heat extraction/injection. Monitoring of the ground temperature can therefore be useful in ground source heat pump projects to correctly understand the behaviour of a shallow geothermal reservoir subjected to heat extraction/injection. This paper illustrates the practical aspects and main issues occurred in the installation, testing and working phases of a monitoring system realised to record ground temperature in a geothermal application. The case study is a fi eld of eight coaxial borehole heat exchangers, 30 m long, connected to a novel prototype of dual source (air and ground) heat pump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.