In an arbitrary unitary 4D CFT we consider a scalar operator φ, and the operator φ 2 defined as the lowest dimension scalar which appears in the OPE φ × φ with a nonzero coefficient. Using general considerations of OPE, conformal block decomposition, and crossing symmetry, we derive a theory-independent inequality [φ 2 ] ≤ f ([φ]) for the dimensions of these two operators. The function f (d) entering this bound is computed numerically. For, which shows that the free theory limit is approached continuously. We perform some checks of our bound. We find that the bound is satisfied by all weakly coupled 4D conformal fixed points that we are able to construct. The Wilson-Fischer fixed points violate the bound by a constant O(1) factor, which must be due to the subtleties of extrapolating to 4 − ε dimensions. We use our method to derive an analogous bound in 2D, and check that the Minimal Models satisfy the bound, with the Ising model nearly-saturating it. Derivation of an analogous bound in 3D is currently not feasible because the explicit conformal blocks are not known in odd dimensions. We also discuss the main phenomenological motivation for studying this set of questions: constructing models of dynamical ElectroWeak Symmetry Breaking without flavor problems.
We study the constraints of crossing symmetry and unitarity in general 3D Conformal Field Theories. In doing so we derive new results for conformal blocks appearing in four-point functions of scalars and present an efficient method for their computation in arbitrary space-time dimension. Comparing the resulting bounds on operator dimensions and OPE coefficients in 3D to known results, we find that the 3D Ising model lies at a corner point on the boundary of the allowed parameter space. We also derive general upper bounds on the dimensions of higher spin operators, relevant in the context of theories with weakly broken higher spin symmetries.
We use the conformal bootstrap to perform a precision study of the operator spectrum of the critical 3d Ising model. We conjecture that the 3d Ising spectrum minimizes the central charge c in the space of unitary solutions to crossing symmetry. Because extremal solutions to crossing symmetry are uniquely determined, we are able to precisely reconstruct the first several Z 2 -even operator dimensions and their OPE coefficients. We observe that a sharp transition in the operator spectrum occurs at the 3d Ising dimension ∆ σ = 0.518154(15), and find strong numerical evidence that operators decouple from the spectrum as one approaches the 3d Ising point. We compare this behavior to the analogous situation in 2d, where the disappearance of operators can be understood in terms of degenerate Virasoro representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.