Human immunodeficiency virus type 1 (HIV-1) infection, still represent a serious global health emergency. The chronic toxicity derived from the current anti-retroviral therapy limits the prolonged use of several antiretroviral agents, continuously requiring the discovery of new antiviral agents with innovative strategies of action. In particular, the development of single molecules targeting two proteins (dual inhibitors) is one of the current main goals in drug discovery. In this contest, metal-chelating molecules have been extensively explored as potential inhibitors of viral metal-dependent enzymes, resulting in some important classes of antiviral agents. Inhibition of HIV Integrase (IN) is, in this sense, paradigmatic. HIV-1 IN and Reverse Transcriptase-associated Ribonuclease H (RNase H) active sites show structural homologies, with the presence of two Mg(II) cofactors, hence it seems possible to inhibit both enzymes by means of chelating ligands with analogous structural features. Here we present a series of N′-acylhydrazone ligands with groups able to chelate the Mg(II) hard Lewis acid ions in the active sites of both the enzymes, resulting in dual inhibitors with micromolar and even nanomolar activities. The most interesting identified N′-acylhydrazone analog, compound 18, shows dual RNase H-IN inhibition and it is also able to inhibit viral replication in cell-based antiviral assays in the low micromolar range. Computational modeling studies were also conducted to explore the binding attitudes of some model ligands within the active site of both the enzymes.
In a search for new potential multitarget anti-HIV compounds from natural products, we have identified in Hypericum scruglii, an endemic and exclusive species of Sardinia (Italy), a potent plant lead. The phytochemical study of the hydroalcoholic extract obtained from its leaves led to the isolation of its most abundant secondary metabolites, belonging to different chemical classes. In particular, three phloroglucinols derivatives were identified, confirming their significance as chemotaxonomic markers of the Hypericum genus. Among them, the 3-(13-hydroxygeranyl)-1-(2'-methylbutanoyl)phloroglucinol was reported here for the first time. All six isolated compounds have been evaluated firstly for the inhibition of both Human Immunodeficiency Virus type 1 (HIV-1) Reverse Transcriptase (RT)-associated DNA Polymerase (RDDP) and Ribonuclease H (RNase H) activities, for the inhibition of HIV-1 integrase (IN) in biochemical assays, and also for their effect on viral replication. Among the isolated metabolites, three phloroglucinol derivatives and quercitrin were effective on both RT-associated RDDP and RNase H activities in biochemical assays. The same active compounds affected also HIV-1 IN strand transfer function, suggesting the involvement of the RNase H active site. Furthermore, phloroglucinols compounds, included the newly identified compound, were able to inhibit the HIV-1 replication in cell based assays.
The paper focussed on a step-by-step structural modification of a cycloheptathiophene-3-carboxamide derivative recently identified by us as reverse transcriptase (RT)-associated ribonuclease H (RNase H) inhibitor. In particular, its conversion to a 2-aryl-cycloheptathienoozaxinone derivative and the successive thorough exploration of both 2-aromatic and cycloheptathieno moieties led to identify oxazinone-based compounds as new anti-RNase H chemotypes. The presence of the catechol moiety at the C-2 position of the scaffold emerged as critical to achieve potent anti-RNase H activity, which also encompassed anti-RNA dependent DNA polymerase (RDDP) activity for the tricyclic derivatives. Benzothienooxazinone derivative 22 resulted the most potent dual inhibitor exhibiting IC50s of 0.53 and 2.90 μM against the RNase H and RDDP functions. Mutagenesis and docking studies suggested that compound 22 binds two allosteric pockets within the RT, one located between the RNase H active site and the primer grip region and the other close to the DNA polymerase catalytic centre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.