The transfer of foreign genes into eukaryotic cells, in particular mammalian cells, has been essential to our understanding of the functional significance of genes and regulatory sequences as well as the development of gene therapy strategies. To this end, different mammalian expression vector systems have been designed. The choice of a particular expression system depends on the nature and purpose of the study and will involve selecting particular parameters of expression systems such as the type of promoter/enhancer sequences, the type of expression (transient versus stable) and the level of desired expression. In addition, the success of the study depends on efficient gene transfer. The purification of the expression vectors, as well as the transfer method, affects transfection efficiency. Numerous approaches have been developed to facilitate the transfer of genes into cells via physical, chemical or viral strategies. While these systems have all been effective in vitro they need to be optimized for individual cell types and, in particular, for in vivo transfection.
Stem cells isolated from amniotic epithelium (AECs) have shown great potential in cell-based regenerative therapies. Because of their fetal origin, these cells exhibit elevated proliferation rates and plasticity, as well as, immune tolerance and anti-inflammatory properties. These inherent attitudes make AECs well-suited for both allogenic and xenogenic cellular transplants in animal models. Since in human only at term amnion is easily obtainable after childbirth, limited information are so far available concerning the phenotypic and functional difference between AECs isolated from early and late amnia. To this regard, the sheep animal model offers an undoubted advantage in allowing the easy collection of both types of AECs in large quantity. The aim of this study was to determine the effect of gestational age on ovine AECs (oAECs) phenotype, immunomodulatory properties, global DNA methylation status and pluripotent differentiation ability towards mesodermic and ectodermic lineages. The immunomodulatory property of oAECs in inhibiting lymphocyte proliferation was mainly unaffected by gestational age. Conversely, gestation considerably affected the expression of surface markers, as well the expression and localization of pluripotency markers. In detail, with progression of gestation the mRNA expression of NANOG and SOX2 markers was reduced, while the ones of TERT and OCT4A was unaltered; but at the end of gestation NANOG, SOX2 and TERT proteins mainly localized outside the nuclear compartment. Regarding the differentiation ability, LPL (adipogenic-specific gene) mRNA content significantly increased in oAECs isolated from early amnia, while OCN (osteogenic-specific gene) and NEFM (neurogenic-specific gene) mRNA content significantly increased in oAECs isolated from late amnia, suggesting that gestational stage affected cell plasticity. Finally, the degree of global DNA methylation increased with gestational age. All these results indicate that gestational age is a key factor capable of influencing morphological and functional properties of oAECs, and thus probably affecting the outcome of cell transplantation therapies.
We set out to characterize stemness properties and osteogenic potential of sheep AEC (amniotic epithelial cells). AEC were isolated from 3-month-old fetuses and expanded in vitro for 12 passages. The morphology, surface markers, stemness markers and osteogenic differentiation were inspected after 1, 6 and 12 passages of expansion, with an average doubling time of 24 h. AEC clearly expressed the stemness markers Oct-3/4 (octamer-binding protein-3/4), Nanog, Sox2 and TERT (telomerase reverse transcriptase) and displayed low levels of global DNA methylation. Culture had moderate effects on cell conditions; some adhesion molecules progressively disappeared from the cell surface, and the expression of Sox2 and TERT was slightly reduced while Nanog increased. No changes occurred in the levels of DNA methylation. Cells organized in 3D spheroids were used for IVD (in vitro differentiation). Within these structures the cells developed a complex intercellular organization that involved extensive intercellular coupling despite continuous cell migration. Marked deposition of calcein in the ECM (extracellular matrix), increased ALP (alkaline phosphatase) activity, expression of bone-related genes (osteocalcin) and the matrix mineralization shown by Alizarin Red staining demonstrate that AEC can undergo rapid and extensive osteogenic differentiation. AEC introduced in experimental bone lesions survived in the site of implantation for 45 days and supported consistent bone neoformation, thus showing promising potential applications in osteogenic regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.