MAK and AB are scientific cofounders and are on the board of directors of LogicBio Therapeutics, which has licensed the GeneRide technology from Stanford University. GB and AFM are inventors of a patent describing AAV-mediated liver gene transfer (treatment of hyperbilirubinemia, CA2942451).
Crigler‐Najjar syndrome type I (CNSI) is a rare monogenic disease characterized by severe neonatal unconjugated hyperbilirubinemia with a lifelong risk of neurological damage and death. Liver transplantation is the only curative option, which has several limitations and risks. We applied an in vivo gene targeting approach based on the insertion, without the use of nucleases, of a promoterless therapeutic cDNA into the albumin locus of a mouse model reproducing all major features of CNSI. Neonatal transduction with the donor vector resulted in the complete rescue from neonatal lethality, with a therapeutic reduction in plasma bilirubin lasting for at least 12 months, the latest time point analyzed. Mutant mice, which expressed about 5–6% of WT Ugt1a1 levels, showed normal liver histology and motor‐coordination abilities, suggesting no functional liver or brain abnormalities. These results proved that the promoterless gene therapy is applicable for CNSI, providing therapeutic levels of an intracellular ER membrane‐bound enzyme responsible for a lethal liver metabolic disease.
The Crigler-Najjar Syndrome Type I (CNSI) is a rare genetic disorder caused by mutations in the Ugt1a1 gene. It is characterized by unconjugated hyperbilirubinemia that may result in severe neurologic damage and death if untreated. To date, liver transplantation is the only curative treatment. With the aim of generating mutant cell lines of the Ugt1 gene, we utilized the TALEN technology to introduce site-specific mutations in Ugt1 exon 4. We report a fast and efficient method to perform gene knockout in tissue culture cells, based on the use of TALEN pairs targeting restriction enzyme (RE) sites in the region of interest. This strategy overcame the presence of allele-specific single nucleotide polymorphisms (SNPs) and pseudogenes, conditions that limit INDELs' detection by Surveyor. We obtained liver-derived murine N-Muli cell clones having INDELs with efficiency close to 40%, depending on the TALEN pair and RE target site. Sequencing of the target locus and WB analysis of the isolated cell clones showed a high proportion of biallelic mutations in cells treated with the most efficient TALEN pair. Ugt glucuronidation activity was reduced basal levels in the biallelic mutant clones. These mutant liver-derived cell lines could be a very useful tool to study biochemical aspects of Ugt1 enzyme activity in a more natural context, such as substrate specificity, requirement of specific co-factors, the study of inhibitors and other pharmacological aspects, and to correlate enzyme activity to the presence of specific mutations in the gene, by adding back to the mutant cell clones specific variants of the Ugt1 gene. In addition, since genome editing has recently emerged as a potential therapeutic approach to cure genetic diseases, the definition of the most efficient TALEN pair could be an important step towards setting up a platform to perform genome editing in CNSI.
Many inborn errors of metabolism require life-long treatments and, in severe conditions involving the liver, organ transplantation remains the only curative treatment. Non-integrative AAV-mediated gene therapy has shown efficacy in adult patients. However, treatment in pediatric or juvenile settings, or in conditions associated with hepatocyte proliferation, may result in rapid loss of episomal viral DNA and thus therapeutic efficacy. Re-administration of the therapeutic vector later in time may not be possible due to the presence of anti-AAV neutralizing antibodies. We have previously shown the permanent rescue of the neonatal lethality of a Crigler-Najjar mouse model by applying an integrative gene-therapy based approach. Here, we targeted the human coagulation factor IX (hFIX) cDNA into a hemophilia B mouse model. Two AAV8 vectors were used: a promoterless vector with two arms of homology for the albumin locus, and a vector carrying the CRISPR/SaCas9 and the sgRNA. Treatment of neonatal P2 wild-type mice resulted in supraphysiological levels of hFIX being stable 10 months after dosing. A single injection of the AAV vectors into neonatal FIX KO mice also resulted in the stable expression of above-normal levels of hFIX, reaching up to 150% of the human levels. Mice subjected to tail clip analysis showed a clotting capacity comparable to wild-type animals, thus demonstrating the rescue of the disease phenotype. Immunohistological analysis revealed clusters of hFIX-positive hepatocytes. When we tested the approach in adult FIX KO mice, we detected hFIX in plasma by ELISA and in the liver by western blot. However, the hFIX levels were not sufficient to significantly ameliorate the bleeding phenotype upon tail clip assay. Experiments conducted using a AAV donor vectors containing the eGFP or the hFIX cDNAs showed a higher recombination rate in P2 mice compared to adult animals. With this study, we demonstrate an alternative gene targeting strategy exploiting the use of the CRISPR/SaCas9 platform that can be potentially applied in the treatment of pediatric patients suffering from hemophilia, also supporting its application to other liver monogenic diseases. For the treatment of adult patients, further studies for the improvement of targeting efficiency are still required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.