An extracellular form of the calcium-dependent protein-cross-linking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein: His6-Xpr-GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activity was observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization.
A transglutaminase (TGase; EC 2.3.2.13) activity, which shared many properties with the TGase activity of the Helianthus tuberosus chloroplast, was observed in the Zea mays L. chloroplast and in its fractions. This activity was found to be prevalent in thylakoids; bis-(glutamyl) spermidine and bis-(glutamyl) putrescine were the main polyamine conjugates formed. Light stimulated the endogenous thylakoid activity. Putrescine, spermidine and spermine were conjugated to the isolated light-harvesting complex of photosystem II (LHCII) with different degrees of efficiency, spermine being the polyamine most efficiently conjugated. A TGase with a light-sensitive activity was identified in the photosystem II-enriched fraction. Its partial purification on a sucrose gradient allowed the separation of a 39-kDa band, which was immunorecognised by two anti-TGase antibodies (Ab-3 and rat prostatic gland-TGase). Both a colorimetric and a radiometric assay for TGase activity, the former carried out in the presence of biotinylated cadaverine and the latter in the presence of polyamines labelled with radioactive isotopes and resulting in the isolation of glutamyl-polyamines, further confirmed that the thylakoid enzyme is indeed a calcium-dependent transglutaminase (Thyl-TGase). At variance with guinea pig liver and erythrocyte TGases, which are insensitive to light, the activity of the thylakoid transglutaminase is affected by light. Moreover, this enzyme, when tested with purified LHCII as substrate, catalysed the production of mono- and bis-glutamyl-polyamines in equal amounts, whereas the 'animal' enzymes produced mainly mono-derivatives. Herein, it is discussed whether this light sensitivity is due to the enzyme or the substrate.
The polyamine (PA) content and the transglutaminase (TGase) activity have been investigated in Pyrus communis pollination with compatible and self-incompatible (SI) pollen in order to deepen their possible involvement in the progamic phase of plant reproduction. The PA distribution as free, perchloric acid (PCA)-soluble and PCA-insoluble fractions in ungerminated (UGP), germinating pollen (GP), styles and pollinated styles with compatible and SI pollens is discussed in the light of a possible role during pollination. Generally, the conjugated PAs both in PCA-soluble and PCA-insoluble fractions were higher than the free form. Within the conjugated PAs, the PCA-insoluble ones were the highest with the exception of the not pollinated styles. As TGase mediates some of the effects of PAs by covalently binding them to proteins, the activity of this enzyme, never checked before in styles and pollinated styles, was examined. In the SI styles, the TGase activity is higher in comparison to style-pollinated with compatible pollen, and high molecular mass cross-linked products were formed, suggesting an involvement of TGase in SI response. This is the first evidence on the presence of this enzyme activity in not pollinated and pollinated styles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.