Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields.
A Gram-stain-positive, aerobic, endospore-forming, thermophilic bacterium, strain N.8, was isolated from the curing step of an olive mill pomace compost sample, collected at the Composting Experimental Centre (CESCO, Salerno, Italy). Strain N.8, based on 16S rRNA gene sequence similarities, was most closely related to Aeribacillus pallidus strain H12 (=DSM 3670) (99.8 % similarity value) with a 25 % DNA-DNA relatedness value. Cells were rod-shaped, non-motile and grew optimally at 60 °C and pH 9.0, forming cream colonies. Strain N.8 was able to grow on medium containing up to 9.0 % (w/v) NaCl with an optimum at 6.0 % (w/v) NaCl. The cellular membrane contained MK-7, and C16 : 0 (48.4 %), iso-C17 : 0 (19.4 %) and anteiso-C17 : 0 (14.6 %) were the major cellular fatty acids. The DNA G+C content was 40.5 mol%. Based on phenotypic characteristics, 16S rRNA gene sequences, DNA-DNA hybridization values and chemotaxonomic characteristics, strain N.8 represents a novel species of the genus Aeribacillus, for which the name Aeribacillus composti sp. nov. is proposed. The type strain is N.8 (=KCTC 33824=JCM 31580).
Extremophiles are organisms able to thrive in extreme environmental conditions and some of them show the ability to survive high doses of heavy metals thanks to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes, lipids, and extremozymes. This is why there is a growing scientific and industrial interest in the use of thermophilic bacteria in a host of tasks, from the environmental detoxification of heavy metal to industrial activities, such as bio-machining and bio-metallurgy. In this work Thermus thermophilus was challenged against increasing Pb2+ concentrations spanning from 0 to 300 ppm in order to ascertain the sensitiveness of this bacteria to the Pb environmental pollution and to give an insight on its heavy metal resistance mechanisms. Analysis of growth parameters, enzyme activities, protein profiles, and lipid membrane modifications were carried out. In addition, genotyping analysis of bacteria grown in the presence of Pb2+, using random amplified polymorphic DNA-PCR and DNA melting evaluation, were also performed. A better knowledge of the response of thermophilic bacteria to the different pollutants, as heavy metals, is necessary for optimizing their use in remediation or decontamination processes.
Background The management of the organic waste recycling process determines the interest in the thermophiles microorganisms involved in composting. Although many microbial enzymes have been isolated and studied for their industrial and commercial uses, there is still a continuous search for microorganisms which could synthesize industrially feasible enzymes, especially when the microbial diversity of cow dung itself makes a potential source of biotechnological enzymes. Results The composting process studied at the Experimental Station of the University of Naples Federico II (Castel Volturno, Caserta, Italy) was characterized by fresh saw dust 40%, bovine manure 58%, and 2% mature compost as raw organic substrates, and its thermophilic phase exceeded a temperature of 55 °C for at least 5 days, thus achieving sanitation. Six microbial strains were isolated and designated as follow: CV1-1, CV1-2, CV2-1, CV2-2, CV2-3 and CV2-4. Based on 16S rRNA gene sequence, HRMAS–NMR spectroscopy, and biochemical investigations, they were ascribed to the genera Geobacillus and Bacillus. All the microbial isolates were qualitatively screened on plates for the presence of hydrolytic activities, and they were quantitatively screened in liquid for glycoside hydrolase enzymes in the extracellular, cell-bound, and cytosolic fractions. Based on these results, strains CV2-1 and CV2-3 were also quantitatively screened for the presence of cellulase and pectinase activities, and pH and temperature optimum plus thermostability of cellulase from CV2-1 were analyzed. Conclusions The isolation and the identification of these thermophilic microorganisms such as Geobacillus toebii, Geobacillus galactosidasius, Bacillus composti, Bacillus thermophilus and Aeribacillus composti have allowed the study of the biodiversity of compost, with emphasis on their primary metabolome through an innovative and underutilized technique, that is HRMAS–NMR, also highlighting it as a novel approach to bacterial cell analysis. Subsequently, this study has permitted the identification of enzymatic activities able to degrade cellulose and other polymeric substrates, such as the one investigated from strain CV2-1, which could be interesting from an industrial and a biotechnological point of view, furthermore, increasing the knowledge for potential applicability in different industrial fields as an efficient and environmentally friendly technique. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.