BackgroundGenetic, hormonal, and environmental factors contribute since infancy to sexual dimorphism in regional brain structures of subjects with typical development. However, the neuroanatomical differences between male and female children with autism spectrum disorders (ASD) are an intriguing and still poorly investigated issue. This study aims to evaluate whether the brain of young children with ASD exhibits sex-related structural differences and if a correlation exists between clinical ASD features and neuroanatomical underpinnings.MethodsA total of 152 structural MRI scans were analysed. Specifically, 76 young children with ASD (38 males and 38 females; 2–7 years of age; mean = 53 months, standard deviation = 17 months) were evaluated employing a support vector machine (SVM)-based analysis of the grey matter (GM). Group comparisons consisted of 76 age-, gender- and non-verbal-intelligence quotient-matched children with typical development or idiopathic developmental delay without autism.ResultsFor both genders combined, SVM showed a significantly increased GM volume in young children with ASD with respect to control subjects, predominantly in the bilateral superior frontal gyrus (Brodmann area –BA– 10), bilateral precuneus (BA 31), bilateral superior temporal gyrus (BA 20/22), whereas less GM in patients with ASD was found in right inferior temporal gyrus (BA 37). For the within gender comparisons (i.e., females with ASD vs. controls and males with ASD vs. controls), two overlapping regions in bilateral precuneus (BA 31) and left superior frontal gyrus (BA 9/10) were detected. Sex-by-group analyses revealed in males with ASD compared to matched controls two male-specific regions of increased GM volume (left middle occipital gyrus—BA 19—and right superior temporal gyrus—BA 22). Comparisons in females with and without ASD demonstrated increased GM volumes predominantly in the bilateral frontal regions. Additional regions of significantly increased GM volume in the right anterior cingulate cortex (BA 32) and right cerebellum were typical only of females with ASD.ConclusionsDespite the specific behavioural correlates of sex-dimorphism in ASD, brain morphology as yet remains unclear and requires future dedicated investigations. This study provides evidence of structural brain gender differences in young children with ASD that possibly contribute to the different phenotypic disease manifestations in males and females.Electronic supplementary materialThe online version of this article (doi:10.1186/s13229-015-0067-3) contains supplementary material, which is available to authorized users.
The hippocampus is one of the most interesting and studied brain regions because of its involvement in memory functions and its vulnerability in pathological conditions, such as neurodegenerative processes. In the recent years, the increasing availability of Magnetic Resonance Imaging (MRI) scanners that operate at ultra‐high field (UHF), that is, with static magnetic field strength ≥7T, has opened new research perspectives. Compared to conventional high‐field scanners, these systems can provide new contrasts, increased signal‐to‐noise ratio and higher spatial resolution, thus they may improve the visualization of very small structures of the brain, such as the hippocampal subfields. Studying the morphometry of the hippocampus is crucial in neuroimaging research because changes in volume and thickness of hippocampal subregions may be relevant in the early assessment of pathological cognitive decline and Alzheimer's Disease (AD). The present review provides an overview of the manual, semi‐automated and fully automated methods that allow the assessment of hippocampal subfield morphometry at UHF MRI, focusing on the different hippocampal segmentation produced. © 2017 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Despite the subtle impact of ASD on brain morphology and a limited cohort size, results from sMRI-based classifiers suggest a consistent network of altered brain regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.