We consider a class of beams that are both partially polarized and partially coherent from the spatial standpoint. They are characterized by a correlation matrix whose elements have the same form as the mutual intensity of a Gaussian Schell-model beam. We focus our attention on those beams that would appear identical to ordinary Gaussian Schell-model beams in a scalar treatment. After establishing some inequalities that limit the choice of the matrix parameters, we study the main effects of propagation. Starting from the source plane, in which the beam is assumed to be uniformly polarized, we find that in the course of propagation the degree of polarization generally becomes non-uniform across a typical section of the beam. Furthermore, we find that the intensity distribution at the output of an arbitrarily oriented linear polarizer is Gaussian shaped at the source plane whereas it can be quite different at other planes.
An experimental procedure for the synthesis of a class of partially polarized Gaussian Schell-model sources is proposed. The experimental set-up is based on Mach-Zenhder interferometer. This kind of sources give rise to not only a coherence degree and intensity profile that are both Gaussian but also a Gaussian local degree of polarization in each plane upon free propagation. Measurements of the local degree of polarization and the intensities in the far field are presented. It is shown that from these measurements some characteristic parameters of the source can be obtained. (C) 2002 Elsevier Science B.V. All rights reserved
We study the group velocity of pulsed light beams in vacuum. Gouy's phase associated with the diffraction of transversally limited pulses can create a strong anomalous dispersion in vacuum leading to highly superluminal and negative group velocities. As a consequence, a focusing pulse can diverge beyond the focus before converging into it. The experimental feasibility is discussed.
We analyze the polarization features of the beam, generated by a class of partially polarized quasi-homogeneous sources, which propagates through a polarization grating. Analytical expressions in the far zone for the beam coherence polarization matrix, the degree of polarization and the Stokes parameters are given. In particular, it is shown that, under some hypotheses, it is possible to completely and uniformly depolarize the beam in the far field. The influence of source parameters, such as the state of polarization, intensity and degree of coherence, on the degree of polarization and the Stokes parameters is also investigated. (C) 2001 Elsevier Science B.V. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.