The temporal and spatial control over the delivery of materials such as siRNA into cells remains a significant technical challenge. We demonstrate the pulsed near-infrared (NIR) laser-dependent release of siRNA from coated 40 nm gold nanoshells. Tat-lipid coating mediates the cellular uptake of the nanomaterial at picomolar concentration, while spatiotemporal silencing of a reporter gene (green fluorescence protein) was studied using photomasking. The NIR laser-induced release of siRNA from the nanoshells is found to be power- and time-dependent, through surface-linker bond cleavage, while the escape of the siRNA from endosomes occurs above a critical pulse energy attributed to local heating and cavitation. NIR laser-controlled drug release from functional nanomaterials should facilitate more sophisticated developmental biology and therapeutic studies.
Nanorattles consisting of hydrophilic, rare-earth-doped NaYF(4) shells each containing a loose magnetic nanoparticle were fabricated through an ion-exchange process. The inner magnetic Fe(3)O(4) nanoparticles are coated with a SiO(2) layer to avoid iron leaching in acidic biological environments. This multifunctional mesoporous nanostructure with both upconversion luminescent and magnetic properties has excellent water dispersibility and a high drug-loading capacity. The material emits visible luminescence upon NIR excitation and can be directed by an external magnetic field to a specific target, making it an attractive system for a variety of biological applications. Measurements on cells incubated with the nanorattles show them to have low cytotoxicity and excellent cell imaging properties. In vivo experiments yield highly encouraging tumor shrinkage with the antitumor drug doxorubicin (DOX) and significantly enhanced tumor targeting in the presence of an applied magnetic field.
There is considerable interest in using nanoparticles as labels or to deliver drugs and other bioactive compounds to cells in vitro and in vivo. Fluorescent imaging, commonly used to study internalization and subcellular localization of nanoparticles, does not allow unequivocal distinction between cell surface-bound and internalized particles, since there is no methodology to turn particles ‘off.’ We have developed a simple technique to rapidly remove silver nanoparticles outside living cells leaving only the internalized pool for imaging or quantification. The silver nanoparticle (AgNP) etching is based on the sensitivity of Ag to a hexacyanoferrate/thiosulfate redox-based destain solution. In demonstration of the technique we present a new class of multicolored plasmonic nanoprobes comprising dye-labeled AgNPs that are exceptionally bright and photostable, carry peptides as model targeting ligands, can be etched rapidly and with minimal toxicity in mice and that show tumour uptake in vivo.
The water-soluble rhenium(I) complex fac-[Re(bpy)(CO)(3)(thp)](+) (1) [CF(3)SO(3)(-) salt; bpy = 2,2'-bipyridine, thp = tris(hydroxymethyl)phosphine] is both strongly luminescent and photoactive toward carbon monoxide release. It is stable in aerated aqueous media, is incorporated into cells from the human prostatic carcinoma cell line PPC-1, and shows no apparent cytotoxicity. Furthermore, the solvated Re(I) photoproduct of CO release (2) is also luminescent, a feature that allows one to track the transformation of 1 to 2 inside such cells using confocal fluorescence microscopy. In this context, 1 is a very promising candidate as a photoactivated CO releasing moiety (photoCORM) with potential therapeutic applications.
Small Ag clusters incorporating both the pH‐sensitive Raman probe molecule 4‐mercaptobenzoic acid and a fluorescent dye are used to determine the local pH from the spatially mapped surface‐enhanced Raman spectra correlated with the fluorescence, allowing simultaneous single‐particle tracking and local pH sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.