It is well known that the evaluation of a product from the shelf considers the simultaneous cerebral and emotional evaluation of the different qualities of the product such as its colour, the eventual images shown, and the envelope's texture (hereafter all included in the term “product experience”). However, the measurement of cerebral and emotional reactions during the interaction with food products has not been investigated in depth in specialized literature. The aim of this paper was to investigate such reactions by the EEG and the autonomic activities, as elicited by the cross-sensory interaction (sight and touch) across several different products. In addition, we investigated whether (i) the brand (Major Brand or Private Label), (ii) the familiarity (Foreign or Local Brand), and (iii) the hedonic value of products (Comfort Food or Daily Food) influenced the reaction of a group of volunteers during their interaction with the products. Results showed statistically significantly higher tendency of cerebral approach (as indexed by EEG frontal alpha asymmetry) in response to comfort food during the visual exploration and the visual and tactile exploration phases. Furthermore, for the same index, a higher tendency of approach has been found toward foreign food products in comparison with local food products during the visual and tactile exploration phase. Finally, the same comparison performed on a different index (EEG frontal theta) showed higher mental effort during the interaction with foreign products during the visual exploration and the visual and tactile exploration phases. Results from the present study could deepen the knowledge on the neurophysiological response to food products characterized by different nature in terms of hedonic value familiarity; moreover, they could have implications for food marketers and finally lead to further study on how people make food choices through the interactions with their commercial envelope.
The recent embedding of electroencephalographic (EEG) electrodes in wearable devices raises the problem of the quality of the data recorded in such uncontrolled environments. These recordings are often obtained with dry single-channel EEG devices, and may be contaminated by many sources of noise which can compromise the detection and characterization of the brain state studied. In this paper, we propose a classification-based approach to effectively quantify artefact contamination in EEG segments, and discriminate muscular artefacts. The performance of our method were assessed on different databases containing either artificially contaminated or real artefacts recorded with different type of sensors, including wet and dry EEG electrodes. Furthermore, the quality of unlabelled databases was evaluated. For all the studied databases, the proposed method is able to rapidly assess the quality of the EEG signals with an accuracy higher than 90%. The obtained performance suggests that our approach provide an efficient, fast and automated quality assessment of EEG signals from low-cost wearable devices typically composed of a dry single EEG channel.
The capability of monitoring user’s performance represents a crucial aspect to improve safety and efficiency of several human-related activities. Human errors are indeed among the major causes of work-related accidents. Assessing human factors (HFs) could prevent these accidents through specific neurophysiological signals’ evaluation but laboratory sensors require highly-specialized operators and imply a certain grade of invasiveness which could negatively interfere with the worker’s activity. On the contrary, consumer wearables are characterized by their ease of use and their comfortability, other than being cheaper compared to laboratory technologies. Therefore, wearable sensors could represent an ideal substitute for laboratory technologies for a real-time assessment of human performances in ecological settings. The present study aimed at assessing the reliability and capability of consumer wearable devices (i.e., Empatica E4 and Muse 2) in discriminating specific mental states compared to laboratory equipment. The electrooculographic (EOG), electrodermal activity (EDA) and photoplethysmographic (PPG) signals were acquired from a group of 17 volunteers who took part to the experimental protocol in which different working scenarios were simulated to induce different levels of mental workload, stress, and emotional state. The results demonstrated that the parameters computed by the consumer wearable and laboratory sensors were positively and significantly correlated and exhibited the same evidences in terms of mental states discrimination.
Driver’s stress affects decision-making and the probability of risk occurrence, and it is therefore a key factor in road safety. This suggests the need for continuous stress monitoring. This work aims at validating a stress neurophysiological measure—a Neurometric—for out-of-the-lab use obtained from lightweight EEG relying on two wet sensors, in real-time, and without calibration. The Neurometric was tested during a multitasking experiment and validated with a realistic driving simulator. Twenty subjects participated in the experiment, and the resulting stress Neurometric was compared with the Random Forest (RF) model, calibrated by using EEG features and both intra-subject and cross-task approaches. The Neurometric was also compared with a measure based on skin conductance level (SCL), representing one of the physiological parameters investigated in the literature mostly correlated with stress variations. We found that during both multitasking and realistic driving experiments, the Neurometric was able to discriminate between low and high levels of stress with an average Area Under Curve (AUC) value higher than 0.9. Furthermore, the stress Neurometric showed higher AUC and stability than both the SCL measure and the RF calibrated with a cross-task approach. In conclusion, the Neurometric proposed in this work proved to be suitable for out-of-the-lab monitoring of stress levels.
The sample size is a crucial concern in scientific research and even more in behavioural neurosciences, where besides the best practice it is not always possible to reach large experimental samples. In this study we investigated how the outcomes of research change in response to sample size reduction. Three indices computed during a task involving the observations of four videos were considered in the analysis, two related to the brain electroencephalographic (EEG) activity and one to autonomic physiological measures, i.e., heart rate and skin conductance. The modifications of these indices were investigated considering five subgroups of sample size (32, 28, 24, 20, 16), each subgroup consisting of 630 different combinations made by bootstrapping n (n = sample size) out of 36 subjects, with respect to the total population (i.e., 36 subjects). The correlation analysis, the mean squared error (MSE), and the standard deviation (STD) of the indexes were studied at the participant reduction and three factors of influence were considered in the analysis: the type of index, the task, and its duration (time length). The findings showed a significant decrease of the correlation associated to the participant reduction as well as a significant increase of MSE and STD (p < 0.05). A threshold of subjects for which the outcomes remained significant and comparable was pointed out. The effects were to some extents sensitive to all the investigated variables, but the main effect was due to the task length. Therefore, the minimum threshold of subjects for which the outcomes were comparable increased at the reduction of the spot duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.