The nanoscaling of metamaterial structures represents a technological challenge toward their application in the optical frequency range. In this work we demonstrate tailored chiro-optical effects in plasmonic nanohelices, by a fabrication process providing a nanometer scale control on geometrical features, that leads to a fine tuning of operation band even in the visible range. Helicoidal 3D nanostructures have been prototyped by a bottom-up approach based on focused ion and electron beam induced deposition, investigating resolution limits, growth control and 3D proximity effects as a function of the interactions between writing beam and deposition environment. The fabricated arrays show chiro-optical properties at the optical frequencies and extremely high operation bandwidth tailoring dependent on the dimensional features of these 3D nanostructures: with the focused ion beam we obtained a broadband polarization selection of about 600 nm and maximum dissymmetry factor up to 40% in the near-infrared region, while with the reduced dimensions obtained by the focused electron beam a highly selective dichroic band shifted toward shorter wavelengths is obtained, with a maximum dissymmetry factor up to 26% in the visible range. A detailed finite difference time domain model highlighted the role of geometrical and compositional parameters on the optical response of fabricated nanohelices, in good agreement with experimental results.
Three dimensional helical chiral metamaterials resulted in effective manipulation of circularly polarized light in the visible infrared for advanced nanophotonics. Their potentialities are severely limited by the lack of full rotational symmetry preventing broadband operation, high signal-to-noise ratio and inducing high optical activity sensitivity to structure orientation. Complex intertwined three dimensional structures such as multiple-helical nanowires could overcome these limitations, allowing the achievement of several chiro-optical effects combining chirality and isotropy. Here we report three dimensional triple-helical nanowires, engineered by the innovative tomographic rotatory growth, on the basis of focused ion beam-induced deposition. These three dimensional nanostructures show up to 37% of circular dichroism in a broad range (500-1,000 nm), with a high signal-to-noise ratio (up to 24 dB). Optical activity of up to 8°only due to the circular birefringence is also shown, tracing the way towards chiral photonic devices that can be integrated in optical nanocircuits to modulate the visible light polarization.
The capability to fully control the chiro-optical properties of metamaterials in the visible range enables a number of applications from integrated photonics to life science. To achieve this goal, a simultaneous control over complex spatial and localized structuring as well as material composition at the nanoscale is required. Here, we demonstrate how circular dichroic bands and optical rotation can be effectively and independently tailored throughout the visible regime as a function of the fundamental meta-atoms properties and of their three dimensional architecture in a the helix-shaped metamaterials. The record chiro-optical effects obtained in the visible range are accompanied by an additional control over optical efficiency, even in the plasmonic context. These achievements pave the way toward fully integrated chiral photonic devices.
Fabrication and characterization of chiral metallic nanospirals for application as metamaterials in the visible and near infrared range are described. The structures consist of platinum helicoidal three‐dimensional nanostructures realized by focused ion beam induced‐deposition, where the interaction with incident light can be controlled as a function of light circular polarization state and spectral region, showing a circular dichroism across a wide range of optical wavelengths. An accurate size control and nanometer resolution on the fabrication of the chiral structures are achieved by exploring substrate surface charge effects on substrates with different electrical properties and by studying and implementing an accurate scanning procedure for the nanostructure growth that allows compensation of the proximity and charge effects. Optical measurements carried out on the nanospiral arrays using a high spatial resolution setup show a transmittance difference of the right‐ and left‐circular polarized light near to 40%.
In this work, we experimentally investigate the chiro-optical properties of 3D metallic helical systems at optical frequencies. Both single and triple-nanowire geometries have been studied. In particular, we found that in single-helical nanostructures, the enhancement of chiro-optical effects achievable by geometrical design is limited, especially with respect to the operation wavelength and the circular polarization conversion purity. Conversely, in the triple-helical nanowire configuration, the dominant interaction is the coupling among the intertwined coaxial helices which is driven by a symmetric spatial arrangement. Consequently, a general improvement in the g-factor, extinction ratio and signal-to-noise-ratio is achieved in a broad spectral range. Moreover, while in single-helical nanowires a mixed linear and circular birefringence results in an optical activity strongly dependent on the sample orientation and wavelength, in the triple-helical nanowire configuration, the obtained purely circular birefringence leads to a large optical activity up to 8°, independent of the sample angle, and extending in a broad band of 500 nm in the visible range. These results demonstrate a strong correlation between the configurational internal interactions and the chiral feature designation, which can be effectively exploited for nanoscale chiral device engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.