We provide a full quantitative version of the Gaussian isoperimetric inequality: the difference between the Gaussian perimeter of a given set and a half-space with the same mass controls the gap between the norms of the corresponding barycenters. In particular, it controls the Gaussian measure of the symmetric difference between the set and the half-space oriented so to have the barycenter in the same direction of the set. Our estimate is independent of the dimension, sharp on the decay rate with respect to the gap and with optimal dependence on the mass
Abstract. Given a metric space X we consider a general class of functionals which measure the cost of a path in X joining two given points x 0 and x 1 , providing abstract existence results for optimal paths. The results are then applied to the case when X is a Wasserstein space of probabilities on a given set and the cost of a path depends on the value of classical functionals over measures. Conditions for linking arbitrary extremal measures µ 0 and µ 1 by means of finite cost paths are given.
A prominent model for transportation networks is branched transport, which seeks the optimal transportation scheme to move material from a given initial to a final distribution. The cost of the scheme encodes a higher transport efficiency the more mass is moved together, which automatically leads to optimal transportation networks with a hierarchical branching structure. The two major existing model formulations, either using mass fluxes (vector-valued measures) or patterns (probabilities on the space of particle paths), are rather different. Once their equivalence was established, the analysis of optimal networks could rest on both.The transportation cost of classical branched transport is a fractional power of the transported mass, and several model properties and proof techniques build on its strict concavity. We generalize the model and its analysis to the most general class of reasonable transportation costs, essentially increasing, subadditive functions. This requires several modifications or new approaches. In particular, for the equivalence between mass flux and pattern formulation it turns out advantageous to resort to a description via 1-currents, an intuition which already Xia exploited. In addition, some already existing arguments are given a more concise and perhaps simpler form. The analysis includes the well-posedness, a metrization and a length space property of the model cost, the equivalence between the different model formulations, as well as a few network properties.
We consider two variational models for transport networks, an urban planning and a branched transport model, in both of which there is a preference for networks that collect and transport lots of mass together rather than transporting all mass particles independently. The strength of this preference determines the ramification patterns and the degree of complexity of optimal networks. Traditionally, the models are formulated in very different ways, via cost functionals of the network in case of urban planning or via cost functionals of irrigation patterns or of mass fluxes in case of branched transport. We show here that actually both models can be described by all three types of formulations; in particular, the urban planning can be cast into a Eulerian (flux-based ) or a Lagrangian (pattern-based ) framework.
Abstract. Given the probability measure ν over the given region Ω ⊂ R n , we consider the optimal location of a set Σ composed by n points in Ω in order to minimize the average distance Σ → Ω dist (x, Σ) dν (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all n points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and preserving the configuration built at previous steps. We show that the respective optimization problems exhibit qualitatively different asymptotic behavior as n → ∞, although the optimization costs in both cases have the same asymptotic orders of vanishing.Mathematics Subject Classification. 90B80, 90B85, 49J45, 46N10, 60K30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.