Summary Numerous broadly neutralizing antibodies (bnAbs) have been identified that target the glycans of the HIV-1 envelope spike. Neutralization breadth is notable given that glycan processing can be substantially influenced by the presence or absence of neighboring glycans. Here, using a stabilized recombinant envelope trimer, we investigate the degree to which mutations in the glycan network surrounding an epitope impact the fine glycan processing of antibody targets. Using cryo-electron microscopy and site-specific glycan analysis, we reveal the importance of glycans in the formation of the 2G12 bnAb epitope and show that the epitope is only subtly impacted by variations in the glycan network. In contrast, we show that the PG9 and PG16 glycan-based epitopes at the trimer apex are dependent on the presence of the highly conserved surrounding glycans. Glycan networks underpin the conservation of bnAb epitopes and are an important parameter in immunogen design.
HIV-1 vaccine immunofocusing strategies may be able to induce broadly-reactive neutralizing antibodies (NAbs). Here, we engineered a panel of diverse, membrane-resident native HIV-1 trimers vulnerable to two broad targets—the V2 apex and fusion peptide (FP). Selection criteria included i) high expression and ii) infectious function, so that trimer neutralization sensitivity can be profiled in pseudovirus (PV) assays. Initially, we boosted the expression of 17 candidate trimers by truncating gp41 and introducing a gp120-gp41 SOS disulfide to prevent gp120 shedding. "Repairs" were made to fill glycan holes and eliminate other strain-specific aberrations. A new neutralization assay allowed PV infection when our standard assay was insufficient. Trimers with exposed V3 loops, a target of non-NAbs, were discarded. To try to increase V2-sensitivity, we removed clashing glycans and modified the C-strand. Notably, a D167N mutation improved V2-sensitivity in several cases. Glycopeptide analysis of JR-FL trimers revealed near complete sequon occupation and that filling the N197 glycan hole was well-tolerated. In contrast, sequon optimization and inserting/removing glycans at other positions frequently had global "ripple" effects on glycan maturation and sequon occupation throughout the gp120 outer domain and gp41. V2 MAb CH01 selectively bound to trimers with small high mannose glycans near the base of the V1 loop, thereby avoiding clashes. Knocking in a rare N49 glycan was found to perturb gp41 glycans, increasing FP NAb sensitivity—and sometimes improving expression. Finally, a biophysical analysis of VLPs revealed that i) ~25% of particles bear Env spikes, ii) spontaneous particle budding is high and only increases 4-fold upon Gag transfection, and iii) Env+ particles express ~30–40 spikes. Taken together, we identified 7 diverse trimers with a range of sensitivities to two targets to allow rigorous testing of immunofocusing vaccine concepts.
1Numerous broadly neutralizing antibodies (bnAbs) have been identified that target the 2 glycans of the HIV-1 envelope spike. Neutralization breadth is notable given that glycan 3 processing can be substantially influenced by the presence or absence of neighboring glycans. 4Here, using a stabilized recombinant envelope trimer, we investigate the degree to which 5 mutations in the glycan network surrounding an epitope impact the fine glycan processing of 6 antibody targets. Using cryo-electron microscopy and site-specific glycan analysis, we reveal 7 the hierarchy of importance of glycans in the formation of the 2G12 bnAb epitope, and show 8 that the epitope is only subtly impacted by variations in the glycan network. In contrast, we 9show that the PG9 and PG16 glycan-based epitopes at the trimer apex are dependent on the 10
Recent HIV-1 vaccine development has centered on “near native” soluble envelope glycoprotein (Env) trimers. These trimers are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These same stabilizing mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their precise effects in this context are unclear. To address this question, we investigated the effects of Env mutations expressed on virus-like particle (VLP) in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 (NFL) neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed processing post-expression, resulting in increased trimer stability. Gp41 N-helix mutations I559P and NT1-5 both imparted lateral trimer stability, but concomitantly reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ donor plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common effect of mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. We observed a minor species of high mannose glycan only gp160 in particle preparations. This was unaffected by any mutations and instead bypasses normal folding and glycan maturation processes. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and increased the proportion of high mannose gp160. Remarkably, NAbs were unable to bind to full-length Env trimers. Overall, our findings suggest caution in leveraging mutations to ensure they impart valuable membrane trimer phenotypes for vaccine use.
HIV-1 vaccine immunofocusing strategies have the potential to induce broadly reactive nAbs. Here, we engineered a panel of diverse, membrane-resident native HIV-1 trimers vulnerable to two broad targets of neutralizing antibodies (NAbs), the V2 apex and fusion peptide (FP). Selection criteria included i) high expression and ii) infectious function, so that trimer neutralization sensitivity can be profiled in pseudovirus assays. Initially, we boosted the expression of 17 candidate trimers by truncating gp41 and introducing a gp120-gp41 SOS disulfide to prevent gp120 shedding. "Repairs" were made to fill glycan holes and other strain-specific aberrations. A new neutralization assay allowed PV infection when our standard assay was insufficient. Trimers with exposed V3 loops, a target of non-neutralizing antibodies, were discarded. To try to increase V2-sensitivity, we removed clashing glycans and modified the V2 loop's C-strand. Notably, a 167N mutation improved V2-sensitivity. Glycopeptide analysis of JR-FL trimers revealed near complete sequon occupation and that filling the N197 glycan hole was well-tolerated. In contrast, sequon optimization and inserting/removing other glycans in some cases had local and global "ripple" effects on glycan maturation and sequon occupation in the gp120 outer domain and gp41. V2 mAb CH01 selectively bound trimers with small high mannose glycans near the base of the V1 loop, thereby avoiding clashes. Knocking in a N49 glycan perturbs gp41 glycans via a distal glycan network effect, increasing FP NAb sensitivity - and sometimes improving expression. Finally, a biophysical analysis of VLPs revealed that i) ~25% of particles bear Env spikes, ii) spontaneous particle budding is high and only increases 4-fold upon Gag transfection, and iii) Env+ particles express ~30-40 spikes. Overall, we identified 7 diverse trimers with a range of sensitivities to two targets that should enable rigorous testing of immunofocusing vaccine concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.