Tracking objects across multiple video frames is a challenging task due to several difficult issues such as occlusions, background clutter, lighting as well as object and camera view-point variations, which directly affect the object detection. These aspects are even more emphasized when analyzing unmanned aerial vehicles (UAV) based images, where the vehicle movement can also impact the image quality. A common strategy employed to address these issues is to analyze the input images at different scales to obtain as much information as possible to correctly detect and track the objects across video sequences. Following this rationale, in this paper, we introduce a simple yet effective novel multi-stream (MS) architecture, where different kernel sizes are applied to each stream to simulate a multi-scale image analysis. The proposed architecture is then used as backbone for the well-known Faster-R-CNN pipeline, defining a MS-Faster R-CNN object detector that consistently detects objects in video sequences. Subsequently, this detector is jointly used with the Simple Online and Real-time Tracking with a Deep Association Metric (Deep SORT) algorithm to achieve real-time tracking capabilities on UAV images. To assess the presented architecture, extensive experiments were performed on the UMCD, UAVDT, UAV20L, and UAV123 datasets. The presented pipeline achieved state-of-the-art performance, confirming that the proposed multi-stream method can correctly emulate the robust multi-scale image analysis paradigm.
Ultrasound (US) imaging for medical purposes has been increasing in popularity over the years. The US technology has some valuable strengths, such as it is harmless, very cheap, and can provide real-time feedback. At the same time, it has also some drawbacks that the research in this field is trying to mitigate, such as the high level of noise and the low quality of the images. This survey aims at presenting the advances in the techniques used for US medical imaging. It describes the studies on the different organs that the US uses the most and tries to categorize the research in this field into three groups, i.e., segmentation, classification, and miscellaneous. This latter group includes the works that either provide aid during surgical operations or try to enhance the quality of the acquired US images/volumes. To the best of our knowledge, this is the first review that analyzes the different techniques exploited on a large selection of body locations (i.e., brain, thyroid, heart, breast, fetal, and prostate) in the three sub-fields of research.
Affective computing is a field of great interest in many computer vision applications, including video surveillance, behaviour analysis, and human-robot interaction. Most of the existing literature has addressed this field by analysing different sets of face features. However, in the last decade, several studies have shown how body movements can play a key role even in emotion recognition. The majority of these experiments on the body are performed by trained actors whose aim is to simulate emotional reactions. These unnatural expressions differ from the more challenging genuine emotions, thus invalidating the obtained results. In this paper, a solution for basic non-acted emotion recognition based on 3D skeleton and Deep Neural Networks (DNNs) is provided. The proposed work introduces three majors contributions. First, unlike the current state-of-theart in non-acted body affect recognition, where only static or global body features are considered, in this work also temporal local movements performed by subjects in each frame are examined. Second, an original set of global and time-dependent features for body movement description is provided. Third, to the best of out knowledge, this is the first attempt to use deep learning methods for non-acted body affect recognition. Due to the novelty of the topic, only the UCLIC dataset is currently considered the benchmark for comparative tests. On the latter, the proposed method outperforms all the competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.